A281918 7th power analog of Keith numbers.
1, 18, 27, 31, 34, 43, 53, 58, 68, 145, 187, 314, 826, 2975, 37164, 40853, 58530, 72795, 77058, 160703, 187617, 1926759, 6291322, 6628695, 25285305, 31292514, 33968486, 54954185, 71593237, 125921697, 555963577, 575307142, 2393596216, 2444508547, 42544333760, 97812197525
Offset: 1
Examples
145^7 = 1347646586640625: 1 + 3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 = 73; 3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 + 73 = 145.
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h); for n from 1 to q do b:=n^w; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
(* function keithQ[ ] is defined in A007629 *) a281918[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 7]&]] a281918[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
Extensions
a(28)-a(29) from Jinyuan Wang, Jan 30 2020
a(30)-a(36) from Giovanni Resta, Feb 03 2020
Comments