cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A281918 7th power analog of Keith numbers.

Original entry on oeis.org

1, 18, 27, 31, 34, 43, 53, 58, 68, 145, 187, 314, 826, 2975, 37164, 40853, 58530, 72795, 77058, 160703, 187617, 1926759, 6291322, 6628695, 25285305, 31292514, 33968486, 54954185, 71593237, 125921697, 555963577, 575307142, 2393596216, 2444508547, 42544333760, 97812197525
Offset: 1

Views

Author

Paolo P. Lava, Feb 02 2017

Keywords

Comments

Like Keith numbers but starting from n^7 digits to reach n.
Consider the digits of n^7. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.
a(30) > 10^8. - Jinyuan Wang, Jan 30 2020

Examples

			145^7 = 1347646586640625:
1 + 3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 = 73;
3 + 4 + 7 + 6 + 4 + 6 + 5 + 8 + 6 + 6 + 4 + 0 + 6 + 2 + 5 + 73 = 145.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
    for n from 1 to q do b:=n^w; a:=[];
    for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
    for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
    t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    (* function keithQ[ ] is defined in A007629 *)
    a281918[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 7]&]]
    a281918[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)

Extensions

a(28)-a(29) from Jinyuan Wang, Jan 30 2020
a(30)-a(36) from Giovanni Resta, Feb 03 2020

A281919 8th-power analog of Keith numbers.

Original entry on oeis.org

1, 30, 46, 54, 63, 207, 394, 693, 694, 718, 20196, 42664, 80051, 90135, 91447, 93136, 207846, 324121, 361401, 421609, 797607, 802702, 882227, 1531788, 1788757, 1789643, 4028916, 4176711, 6692664, 15643794, 31794346, 65335545, 140005632, 144311385, 153364253
Offset: 1

Views

Author

Paolo P. Lava, Feb 02 2017

Keywords

Comments

Like Keith numbers but starting from n^8 digits to reach n.
Consider the digits of n^8. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
    for n from 1 to q do b:=n^w; a:=[];
    for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
    for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
    t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    (* function keithQ[ ] is defined in A007629 *)
    a281919[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 8]&]]
    a281919[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)

Formula

207^8 = 3371031134626313601:
3 + 3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 = 54;
3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 = 105;
7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 + 105 = 207.

Extensions

a(32) from Jinyuan Wang, Feb 01 2020
Terms a(33) and beyond from Giovanni Resta, Feb 03 2020

A281920 9th-power analog of Keith numbers.

Original entry on oeis.org

1, 54, 71, 81, 196, 424, 451, 2394, 9057, 51737, 52141, 104439, 227914, 228088, 1019555, 1096369, 1202713, 1687563, 1954556, 3332130, 3652731, 4177592, 31669012, 79937731, 81478913, 148341053, 168763202, 182573136, 342393476, 773367191, 1450679282, 2914657310, 3282344153
Offset: 1

Views

Author

Paolo P. Lava, Feb 02 2017

Keywords

Comments

Like Keith numbers but starting from n^9 digits to reach n.
Consider the digits of n^9. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.

Examples

			196^9 = 426878854210636742656:
4 + 2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 = 100;
2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 + 100 = 196.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
    for n from 1 to q do b:=n^w; a:=[];
    for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
    for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
    t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    (* function keithQ[ ] is defined in A007629 *)
    a281920[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 9]&]]
    a281920[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)

Extensions

a(24) from Jinyuan Wang, Feb 02 2020
a(25)-a(33) from Giovanni Resta, Feb 03 2020

A281921 10th-power analog of Keith numbers.

Original entry on oeis.org

1, 82, 85, 94, 97, 106, 117, 459, 1197, 24615, 24657, 26184, 87664, 117099, 538168, 1049708, 1229174, 2210323, 4587773, 11019224, 96167938, 104719358, 202511251, 226456915, 821871524, 1811437987, 1832881095, 3530066559, 7414362499, 7906250753, 15607432165, 15631766564
Offset: 1

Views

Author

Paolo P. Lava, Feb 02 2017

Keywords

Comments

Like Keith numbers but starting from n^10 digits to reach n.
Consider the digits of n^10. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.

Examples

			106^10 = 179084769654285362176: 1 + 7 + 9 + 0 + 8 + 4 + 7 + 6 + 9 + 6 + 5 + 4 + 2 + 8 + 5 + 3 + 6 + 2 + 1 + 7 + 6 = 106.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
    for n from 1 to q do b:=n^w; a:=[];
    for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
    for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
    t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    (* function keithQ[ ] is defined in A007629 *)
    a281921[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 10]&]]
    a281921[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)

Extensions

a(21) from Jinyuan Wang, Feb 02 2020
a(22)-a(32) from Giovanni Resta, Feb 03 2020

A187713 Base-5 Keith numbers.

Original entry on oeis.org

5, 9, 10, 11, 13, 15, 20, 22, 31, 40, 43, 53, 62, 71, 84, 93, 124, 154, 221, 483, 3044, 18748, 125973, 232085, 1705260, 2091605, 5616236, 8067806, 8849508, 58944155, 84572166, 164487062, 421825427, 469435978, 744740232
Offset: 1

Views

Author

Alonso del Arte, Mar 17 2011

Keywords

Comments

Among bases b = 2 to 36, in b = 5 there is the third highest percentage of Keith numbers between b and b^3 (that is, numbers with two or three digits); only binary and ternary have more Keith numbers in that range.

Examples

			a(2) = 9. In base 5, the number 9 is written 14, and the second order linear recurrence is then 1, 4, 5, 9, ... therefore 9 is a Keith number in base 5.
The number 14 is a Keith number in base 10 but not base 5, as we have: 2, 4, 6, 10, 16, ...
		

Crossrefs

Cf. A007629, base-10 Keith numbers; A162724, binary Keith numbers.

Programs

  • Mathematica
    (* First run the program for A186830 to define keithSeq *) Select[Range[5, 10^6], Last[keithSeq[#, 5]] == # &]

Extensions

Extended by T. D. Noe, Mar 23 2011

A188195 Base-3 Keith numbers.

Original entry on oeis.org

3, 5, 6, 7, 57, 102, 127, 206, 217, 677, 805, 840, 1486, 1680, 1887, 2090, 2834, 8329, 10145, 12866, 21127, 23002, 50782, 67925, 82685, 96841, 153861, 178852, 357896, 3826652, 17985694, 38610616, 38610808, 70587766, 160804168, 341014432, 632582224
Offset: 1

Views

Author

T. D. Noe, Mar 24 2011

Keywords

Comments

Keith numbers are described in A007629.

Examples

			57 is here because, in base 3, 57 is 2010 and applying the Keith iteration to this number produces the numbers 2, 0, 1, 0, 3, 4, 8, 15, 30, 57.
		

Crossrefs

Cf. A007629 (base 10), A162724 (base 2), A187713 (base 5), A188196-A188200.

Programs

  • Mathematica
    IsKeith[n_,b_] := Module[{d, s, k}, d = IntegerDigits[n, b]; s = Total[d]; k = 1; While[AppendTo[d, s]; s = 2 s - d[[k]]; s < n, k++]; s == n]; Select[Range[3,10^5], IsKeith[#,3]&]

A188200 Base-9 Keith numbers.

Original entry on oeis.org

17, 21, 25, 42, 67, 81, 96, 101, 149, 162, 173, 202, 243, 303, 324, 346, 404, 405, 486, 519, 567, 648, 692, 732, 857, 1189, 1464, 2199, 4398, 11644, 18325, 33774, 34453, 37999, 70348, 92664, 141557, 256820, 263412, 326778, 349484, 526824, 535754, 579708, 1461987, 1519308, 1621052, 2688905, 4650964, 8027458, 8198651, 8374956, 13504910, 17858551, 20002383, 55640285, 154513633, 170801638
Offset: 1

Views

Author

T. D. Noe, Mar 24 2011

Keywords

Comments

Keith numbers are described in A007629. Base 9 appears to be unusually rich in Keith numbers. Why?

Examples

			101 is here because, in base 9, 101 is 122 and applying the Keith iteration to this number produces the numbers 1, 2, 2, 5, 9, 16, 30, 55, 101. Note that the multiples 202, 303, and 404 are here also.
		

Crossrefs

Cf. A007629 (base 10), A162724 (base 2), A187713 (base 5), A188195-A188199.

Programs

  • Mathematica
    IsKeith[n_,b_] := Module[{d, s, k}, d = IntegerDigits[n, b]; s = Total[d]; k = 1; While[AppendTo[d, s]; s = 2 s - d[[k]]; s < n, k++]; s == n]; Select[Range[3,10^5], IsKeith[#,9]&]

A269307 Consider the sum of the divisors of a number x>1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.

Original entry on oeis.org

17, 28, 31, 44, 51, 132, 133, 198, 208, 2528, 9241, 13570, 16577, 177568, 228742, 780889, 878078, 1854920, 2775787, 3663541, 8204010, 66326143, 73734437, 164211532, 670396359, 803230921, 832581731, 1036125551, 1572413223
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2016

Keywords

Comments

44 works in both directions: sigma(n) -> n and n -> sigma(n). See A269308.

Examples

			Sigma(17) = 18 :   1 + 8 = 9;  8 + 9 = 17.
Sigma(133) = 160 :  1 + 6 + 0 = 7;  6 + 0 + 7 = 13;  0 + 7 + 13 = 20; 7 + 13 + 20 = 40;  13 + 20 + 40 = 73;  20 + 40 + 73 = 133.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
    for n from 2 to q do a:=sigma(n); b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
    while v[t]
    				
  • Mathematica
    Select[Range[2,10^5], (t = #; d = IntegerDigits[DivisorSigma[1, #]]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* Robert Price, May 21 2019 *)

Extensions

a(20)-a(29) from Lars Blomberg, Jan 18 2018

A269312 Consider a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the arithmetic derivative of x.

Original entry on oeis.org

14, 51, 145, 285, 629, 708, 807, 1318, 2362, 2548, 2869, 3789, 4087, 4811, 6031, 6355, 10201, 15563, 17143, 17287, 17561, 19883, 20567, 21731, 22429, 23461, 26269, 27301, 30967, 33389, 69529, 73211, 85927, 86087, 90133, 96781, 110159, 116011, 159767, 161701, 162055, 190079
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2016

Keywords

Examples

			14’ = 9 : 1 + 4 = 5; 4 + 5 = 9.
51’ = 20 : 5 + 1 = 6; 1 + 6 = 7; 6 + 7  = 13; 7 + 13 = 20.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,c,k,n,p,t,v; v:=array(1..h);
    for n from 1 to q do a:=n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    while v[t]
    				
  • Mathematica
    dn[n_] := If[Abs@n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@n]]]; (* after Michael Somos,Apr 12 2011 *)
    Select[Range[10^5], # >= 10 && (s = dn[#]; d = IntegerDigits[#]; While[Total[d] < s, d = Join[Rest[d], {Total[d]}]]; Total[d] == s) &] (* Robert Price, May 22 2019 *)

A269309 Consider the Euler totient function of a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.

Original entry on oeis.org

13, 21, 63, 177, 206, 412, 655, 824, 1990, 2637, 11438, 12485, 23846, 34132, 40528, 56202, 87539, 94597, 1288999, 3075239, 3106991, 20689503, 31173397, 46230492, 65889985, 79476719, 170859904, 266368503, 295845211, 420471958, 445169688, 797687940, 962257660
Offset: 1

Views

Author

Paolo P. Lava, Feb 24 2016

Keywords

Examples

			phi(13) = 12 : 1 + 2 = 3; 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
    for n from 2 to q do a:=phi(n); b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
    while v[t]
    				
  • Mathematica
    Select[Range[10^5], EulerPhi[#] >= 10 && (d = IntegerDigits[EulerPhi[#]]; While[Total[d] < #, d = Join[Rest[d], {Total[d]}];]; Total[d] == #) &] (* Robert Price, May 21 2019 *)

Extensions

a(19)-a(33) from Lars Blomberg, Jan 18 2018
Previous Showing 11-20 of 63 results. Next