A128067
Numbers k such that (3^k + 7^k)/10 is prime.
Original entry on oeis.org
3, 13, 31, 313, 3709, 7933, 14797, 30689, 38333
Offset: 1
Cf.
A007658 = numbers n such that (3^n + 1)/4 is prime. Cf.
A057469 = numbers n such that (3^n + 2^n)/5 is prime. Cf.
A122853 = numbers n such that (3^n + 5^n)/8 is prime. Cf.
A128066,
A128068,
A128069,
A128070,
A128071,
A128072,
A128073,
A128074,
A128075. Cf.
A059801 = numbers n such that 4^n - 3^n is prime. Cf.
A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf.
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032.
-
k=7; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
is(n)=isprime((3^n+7^n)/10) \\ Charles R Greathouse IV, Feb 17 2017
A128069
Numbers k such that (3^k + 10^k)/13 is prime.
Original entry on oeis.org
3, 19, 31, 101, 139, 167, 1097, 43151, 60703, 90499
Offset: 1
Cf.
A007658 = numbers n such that (3^n + 1)/4 is prime. Cf.
A057469 = numbers n such that (3^n + 2^n)/5 is prime. Cf.
A122853 = numbers n such that (3^n + 5^n)/8 is prime. Cf.
A128066,
A128067,
A128068,
A128070,
A128071,
A128072,
A128073,
A128074,
A128075. Cf.
A059801 = numbers n such that 4^n - 3^n is prime. Cf.
A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf.
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032.
-
k=10; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
is(n)=isprime((3^n+10^n)/13) \\ Charles R Greathouse IV, Feb 17 2017
A128070
Numbers k such that (3^k + 11^k)/14 is prime.
Original entry on oeis.org
3, 103, 271, 523, 23087, 69833
Offset: 1
Cf.
A007658 (numbers k such that (3^k + 1)/4 is prime).
Cf.
A057469 (numbers k such that (3^k + 2^k)/5 is prime).
Cf.
A122853 (numbers k such that (3^k + 5^k)/8 is prime).
Cf.
A059801 (numbers k such that 4^k - 3^k is prime).
Cf.
A121877 (numbers k such that (5^k - 3^k)/2 is prime).
-
k=11; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
is(n)=isprime((3^n+11^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
A128068
Numbers k such that (3^k + 8^k)/11 is prime.
Original entry on oeis.org
5, 163, 191, 229, 271, 733, 21059, 25237
Offset: 1
Cf.
A007658 = numbers n such that (3^n + 1)/4 is prime. Cf.
A057469 = numbers n such that (3^n + 2^n)/5 is prime. Cf.
A122853 = numbers n such that (3^n + 5^n)/8 is prime. Cf.
A128066,
A128067,
A128069,
A128070,
A128071,
A128072,
A128073,
A128074,
A128075. Cf.
A059801 = numbers n such that 4^n - 3^n is prime. Cf.
A121877 = numbers n such that (5^n - 3^n)/2 is a prime. Cf.
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032.
-
k=8; Do[ p=Prime[n]; f=(3^p+k^p)/(k+3); If[ PrimeQ[f], Print[p]], {n,1,100} ]
-
is(n)=isprime((3^n+8^n)/11) \\ Charles R Greathouse IV, Feb 17 2017
A229524
Numbers k such that (38^k + 1)/39 is prime.
Original entry on oeis.org
5, 167, 1063, 1597, 2749, 3373, 13691, 83891, 131591
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145.
-
Do[ p=Prime[n]; If[ PrimeQ[ (38^p + 1)/39 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((38^n+1)/39) \\ Charles R Greathouse IV, Feb 17 2017
a(9)=131591 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 03 2018
A229663
Numbers n such that (40^n + 1)/41 is prime.
Original entry on oeis.org
53, 67, 1217, 5867, 6143, 11681, 29959
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524.
-
Do[ p=Prime[n]; If[ PrimeQ[ (40^p + 1)/41 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((40^n+1)/41) \\ Charles R Greathouse IV, Feb 17 2017
A230036
Numbers n such that (39^n + 1)/40 is prime.
Original entry on oeis.org
3, 13, 149, 15377
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 (numbers n such that (2^n + 1)/3 is prime).
Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524.
-
Do[ p=Prime[n]; If[ PrimeQ[ (39^p + 1)/40 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((39^n+1)/40) \\ Charles R Greathouse IV, Feb 17 2017
A231604
Numbers n such that (42^n + 1)/43 is prime.
Original entry on oeis.org
3, 709, 1637, 17911, 127609, 172663
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- P. Bourdelais, A Generalized Repunit Conjecture
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663.
-
Do[ p=Prime[n]; If[ PrimeQ[ (42^p + 1)/43 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((42^n+1)/43) \\ Charles R Greathouse IV, Feb 20 2017
a(5)=127609 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 02 2018
a(6)=172663 corresponds to a probable prime discovered by
Paul Bourdelais, Jul 29 2019
A231865
Numbers n such that (43^n + 1)/44 is prime.
Original entry on oeis.org
5, 7, 19, 251, 277, 383, 503, 3019, 4517, 9967, 29573
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604.
-
Do[ p=Prime[n]; If[ PrimeQ[ (43^p + 1)/44 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((43^n+1)/44) \\ Charles R Greathouse IV, Feb 20 2017
A111010
Primes of the form (3^k - (-1)^k)/4.
Original entry on oeis.org
2, 7, 61, 547, 398581, 23535794707, 82064241848634269407
Offset: 1
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
-
Do[f=(3^n - (-1)^n)/4; If[PrimeQ[f],Print[{n,f}]],{n,1,577}] (* Alexander Adamchuk, Nov 19 2006 *)
-
primenum(n,k,typ) = /* k=mult,typ=1 num,2 denom. ouyput prime num or denom. */ { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.); }
Comments