cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A239640 a(n) is the smallest number such that for n-bonacci constant c_n satisfies round(c_n^prime(m)) == 1 (mod 2*p_m) for every m>=a(n).

Original entry on oeis.org

3, 3, 4, 5, 7, 7, 10, 13, 14, 14, 19, 23, 23, 31, 34, 34, 46, 50, 60, 65, 73, 79, 88, 92, 107, 113, 126, 139, 149, 168, 182, 198, 210, 227, 244, 265, 276, 292, 317, 340, 369, 384, 408, 436, 444, 480, 516, 540, 565, 606, 628, 669, 704, 735, 759, 810, 829, 895, 925
Offset: 2

Views

Author

Keywords

Comments

The n-bonacci constant is a unique root x_1>1 of the equation x^n-x^(n-1)-...-x-1=0. So, for n=2 we have Fibonacci constant phi or golden ratio (A001622); for n=3 we have tribonacci constant (A058265); for n=4 we have tetranacci constant (A086088), for n=5 (A103814), for n=6 (A118427), etc.

Examples

			Let n=2, then c_2 = phi (Fibonacci constant). We have round(c_2^2)=3 is not == 1 (mod 4), round(c_2^3)=4 is not == 1 (mod 6), while round(c_2^5)=11 == 1 (mod 10) and one can prove that for p>=5, we have round(c_2^p) == 1 (mod 2*p). Since 5=prime(3), then a(2)=3.
		

Crossrefs

A277167 Prime numbers p such that (-1)^h + (h!)^2 == 0 (mod p^2) where h = (p-1)/2.

Original entry on oeis.org

3, 11, 31, 47, 53
Offset: 1

Views

Author

René Gy, Oct 01 2016

Keywords

Comments

The above congruence is true modulo p for all odd primes. See A089043. But like for Wilson congruence, it is true modulo p^2, for a restricted number of primes. After 53, the next one (if any) seems very far away (>500000).
The fact that the congruence is true modulo p for all odd primes was proved by Lagrange in 1771. Using a theorem of Mathews (1892) and Eisenstein's logarithmetic rule for the Fermat quotient, the condition stated in the definition can be restated as W_p == -2q_p(2) (mod p), where W_p is the Wilson quotient of p (A007619) and q_p(2) is the Fermat quotient of p, base 2 (A007663). - John Blythe Dobson, Jul 31 2017

Examples

			(-1)^((11-1)/2)+(((11-1)/2)!)^2 = 14399 = 7*11^2*17.
		

References

  • Lagrange, "Démonstration d’un théoreme nouveau concernant les nombres premiers," Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres [de Berlin], année 1771 (published 1783), 125-137.
  • G. B. Mathews, Theory of Numbers, part 1 [all published] (Cambridge, 1892), 318.

Crossrefs

Programs

  • PARI
    lista(nn) = forprime(p=3, nn, if ((((-1)^((p-1)/2)+(((p-1)/2)!)^2) % p^2) == 0, print1(p, ", "))); \\ Michel Marcus, Oct 02 2016

A364883 Consider the Fermat quotient for base n: Fq(n,k) = (n^(p - 1) - 1)/p, where p = prime(k), for k >= 1. a(n) is the least k >= 1 such that Fq(n,j) is divisible by n^2 - 1 for all j >= k.

Original entry on oeis.org

3, 3, 4, 4, 5, 5, 5, 4, 6, 6, 7, 7, 7, 5, 8, 8, 9, 9, 9, 6, 10, 10, 10, 7, 7, 7, 11, 11, 12, 12, 12, 8, 8, 8, 13, 13, 13, 9, 14, 14, 15, 15, 15, 10, 16, 16, 16, 5, 8, 8, 17, 17, 17, 6, 9, 11, 18, 18, 19, 19, 19, 12, 7, 7, 20, 20, 20, 10, 21, 21, 22, 22, 22, 13, 9, 9, 23, 23, 23
Offset: 2

Views

Author

Robert G. Wilson v, Aug 17 2023

Keywords

Comments

Conjecture: numbers appear in the sequence only a finite number of times. Terms appear in runs of length 1, 2, or 3, never more. The first time a term k appears is when the index is even. The terms appear for the first time in their natural order.

Examples

			For a(2), examine A007663 and notice that beginning with the second term, offset is 2, all terms are divisible by 3;
For a(3), examine A146211 and notice that beginning with the first term, offset is 3, all terms are divisible by 8;
For a(4), examine A180511 and notice that beginning with the third term, offset is 2, all terms are divisible by 15; etc.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = Floor[(1/2.3) n^(87/100) + 100]}, While[p = Prime@ k; PowerMod[n, p - 1, (n^2 - 1)*p] == 1, k--]; ++k]; Array[a, 79, 2]
Previous Showing 31-33 of 33 results.