cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A005354 Number of asymmetric planar trees with n nodes.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 3, 9, 28, 85, 262, 827, 2651, 8626, 28507, 95393, 322938, 1104525, 3812367, 13266366, 46504495, 164098390, 582521687, 2079133141, 7457788295, 26872946466, 97238824018, 353218128299, 1287657977946, 4709784136316
Offset: 0

Views

Author

Keywords

Comments

a(13) in the Labelle table is a typographical error. - R. J. Mathar, Feb 03 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Feb 03 2010: (Start)
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A007727 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do a := a+binomial(2*d,d)*numtheory[mobius](n/d) ; end do ; a ; end proc;
    A022553 := proc(n) A007727(n)/2/n ; end proc:
    A005354 := proc(n) local a; if n <=1 then 1; else a := A022553(n-1) ; a := a-A000108(n-1)/2 ; if type(n,'even') then a := a-A000108(n/2-1)/2 ; end if; a ; end if; end proc: seq(A005354(n),n=0..20) ; (End)
  • Mathematica
    a[0] = a[1] = 1; a[n_] := DivisorSum[n-1, MoebiusMu[(n-1)/#]*Binomial[2#, #]&]/(2(n-1)) - CatalanNumber[n-1]/2 - Boole[EvenQ[n]]*CatalanNumber[n/2 - 1]/2; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, May 09 2012, after R. J. Mathar, updated Jan 31 2018 *)

Formula

From Christian G. Bower, Dec 15 1999: (Start)
G.f.: 1+B(x)+(C(x^2)-C(x)^2)/2 where B is g.f. of A022553(n-1) and C is g.f. of A000108(n-1).
a(n) = A022553(n-1) - A000108(n-2)/2 - (if n is even) A000108(n/2-1)/2. (End)

Extensions

More terms from Christian G. Bower, Dec 15 1999

A045666 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally inequivalent to reverse, complement and reversed complement.

Original entry on oeis.org

0, 0, 0, 0, 0, 80, 384, 2352, 9856, 42840, 169280, 676720, 2630688, 10265216, 39777248, 154498200, 599556096, 2330826752, 9068386320, 35332969392, 137817005440, 538204062984, 2103970896544, 8233197139552, 32247052083840
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2*n*A045684(n).
a(n) = A007727(n) - A045662(n) - A045663(n) - A045664(n) + 2*A045665(n). - Andrew Howroyd, Sep 14 2019

A053727 Triangle T(n,k) = Sum_{d|gcd(n,k)} mu(d)*C(n/d,k/d) (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 0, 3, 3, 0, 4, 4, 4, 0, 5, 10, 10, 5, 0, 6, 12, 18, 12, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 24, 56, 64, 56, 24, 8, 0, 9, 36, 81, 126, 126, 81, 36, 9, 0, 10, 40, 120, 200, 250, 200, 120, 40, 10, 0, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 0, 12, 60
Offset: 1

Views

Author

N. J. A. Sloane, Mar 24 2000

Keywords

Comments

Triangle of number of primitive words over {0,1} of length n that contain k 1's, for n,k >= 1. - Benoit Cloitre, Jun 08 2004

Examples

			Triangle begins
  1;
  2,  0;
  3,  3,  0;
  4,  4,  4,  0;
  5, 10, 10,  5,  0;
  6, 12, 18, 12,  6,  0;
  ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic sequences, Cambridge University Press, 2003, p. 29.

Crossrefs

Cf. A042979, A042980. T(2n, n), T(2n+1, n) match A007727, A001700, respectively. Row sums match A027375.
Same triangle as A050186 except this one does not include column 0.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[k, n], MoebiusMu[#] Binomial[n/#, k/#] &]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    T(n,k)=sumdiv(gcd(k,n),d,moebius(d)*binomial(n/d,k/d)) \\ Benoit Cloitre, Jun 08 2004

A062791 Moebius transform of A001405 (binomial(n, floor(n/2))).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 34, 64, 123, 241, 461, 900, 1715, 3396, 6423, 12800, 24309, 48477, 92377, 184500, 352679, 704969, 1352077, 2703168, 5200290, 10398883, 20058174, 40113164, 77558759, 155110827, 300540194, 601067520, 1166802646, 2333581909, 4537567606
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			For n = 7, binomial(7,3) = 35, A001405(7/d) = {binomial(7,3), binomial(1,0)} = {35, 1}, mu(d) = {1, -1}, the sum is a(7) = 35 - 1 = 34.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(binomial(d, iquo(d, 2))*mobius(n/d), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 09 2017
  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, Floor[#/2]] * MoebiusMu[n/#] &]; Array[a, 35] (* Amiram Eldar, May 28 2025 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d, d\2) * moebius(n/d)); \\ Amiram Eldar, May 28 2025

Formula

a(n) = Sum_{d|n} A001405(n/d)*mu(d).

Extensions

Offset corrected by Eric Rowland, Jul 09 2017
Previous Showing 11-14 of 14 results.