A116144
a(n) = 4^n * n*(n+1).
Original entry on oeis.org
0, 8, 96, 768, 5120, 30720, 172032, 917504, 4718592, 23592960, 115343360, 553648128, 2617245696, 12213813248, 56371445760, 257698037760, 1168231104512, 5257039970304, 23502061043712, 104453604638720, 461794883665920
Offset: 0
-
List([0..30], n-> 4^n*n*(n+1)); # G. C. Greubel, May 10 2019
-
[(n^2+n)*4^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,8,96]; [n le 3 select I[n] else 12*Self(n-1)-48*Self(n-2)+64*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n)*4^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 28 2013 *)
LinearRecurrence[{12,-48,64},{0,8,96},30] (* Harvey P. Dale, Feb 27 2015 *)
-
a(n)=(n^2+n)*4^n \\ Charles R Greathouse IV, Feb 28 2013
-
[4^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A116156
a(n) = 5^n * n*(n + 1).
Original entry on oeis.org
0, 10, 150, 1500, 12500, 93750, 656250, 4375000, 28125000, 175781250, 1074218750, 6445312500, 38085937500, 222167968750, 1281738281250, 7324218750000, 41503906250000, 233459472656250, 1304626464843750, 7247924804687500
Offset: 0
-
List([0..30], n-> 5^n*n*(n+1)); # G. C. Greubel, May 10 2019
-
[(n^2+n)*5^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,10,150]; [n le 3 select I[n] else 15*Self(n-1)-75*Self(n-2)+125*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 5^n, {n, 0, 30}] (* or *) CoefficientList[Series[10 x/(1 - 5 x)^3, {x, 0, 30}], x](* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*5^n \\ Charles R Greathouse IV, Feb 28 2013
-
[5^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A116164
a(n) = 6^n * n*(n+1).
Original entry on oeis.org
0, 12, 216, 2592, 25920, 233280, 1959552, 15676416, 120932352, 906992640, 6651279360, 47889211392, 339578044416, 2377046310912, 16456474460160, 112844396298240, 767341894828032, 5179557790089216, 34733505180598272
Offset: 0
-
List([0..30], n-> 6^n*n*(n+1) ); # G. C. Greubel, May 10 2019
-
[(n^2+n)*6^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,12,216]; [n le 3 select I[n] else 18*Self(n-1)-108*Self(n-2)+216*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 6^n, {n, 0, 30}] (* or *) CoefficientList[Series[12 x/(1 - 6 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*6^n \\ Charles R Greathouse IV, Feb 28 2013
-
[6^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A116165
a(n) = 7^n * n*(n+1).
Original entry on oeis.org
0, 14, 294, 4116, 48020, 504210, 4941258, 46118408, 415065672, 3631824630, 31072277390, 261007130076, 2159240803356, 17633799894074, 142426845298290, 1139414762386320, 9039357114931472, 71184937280085342, 556917450485373558
Offset: 0
-
List([0..30], n-> 7^n*n*(n+1)); # G. C. Greubel, May 11 2019
-
[(n^2+n)*7^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,14,294]; [n le 3 select I[n] else 21*Self(n-1)-147*Self(n-2)+343*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 7^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*7^n \\ Charles R Greathouse IV, Feb 28 2013
-
[7^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 11 2019
A116166
a(n) = 8^n * n*(n+1).
Original entry on oeis.org
0, 16, 384, 6144, 81920, 983040, 11010048, 117440512, 1207959552, 12079595520, 118111600640, 1133871366144, 10720238370816, 100055558127616, 923589767331840, 8444249301319680, 76561193665298432, 689050742987685888
Offset: 0
-
List([0..30], n-> 8^n*n*(n+1)); # G. C. Greubel, May 11 2019
-
[(n^2+n)*8^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 8^n, {n, 0, 30}] (* Harvey P. Dale, Mar 09 2011 *)
CoefficientList[Series[16 x/(1 - 8 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*8^n \\ Charles R Greathouse IV, Feb 28 2013
-
[8^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 11 2019
A116176
a(n) = 9^n * n*(n+1).
Original entry on oeis.org
0, 18, 486, 8748, 131220, 1771470, 22320522, 267846264, 3099363912, 34867844010, 383546284110, 4142299868388, 44059007691036, 462619580755878, 4804126415541810, 49413871702715760, 504021491367700752
Offset: 0
A127960
a(n) = n^2*3^n.
Original entry on oeis.org
0, 3, 36, 243, 1296, 6075, 26244, 107163, 419904, 1594323, 5904900, 21434787, 76527504, 269440587, 937461924, 3228504075, 11019960576, 37321507107, 125524238436, 419576389587, 1394713760400, 4613015762523, 15188432850756
Offset: 0
-
[n^2*3^n: n in [0..30]]; // Vincenzo Librandi, Feb 07 2013
-
LinearRecurrence[{9,-27,27}, {0,3,36}, 25] (* or *) CoefficientList[ Series[3*x(1 + 3*x)/(1 - 3*x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 07 2013 *)
-
for(n=0,30, print1(n^2*3^n, ", ")) \\ G. C. Greubel, May 04 2018
A128784
a(n) = n^2*5^n.
Original entry on oeis.org
0, 5, 100, 1125, 10000, 78125, 562500, 3828125, 25000000, 158203125, 976562500, 5908203125, 35156250000, 206298828125, 1196289062500, 6866455078125, 39062500000000, 220489501953125, 1235961914062500, 6885528564453125, 38146972656250000, 210285186767578125
Offset: 0
-
Table[n^2 5^n,{n,0,20}] (* or *) LinearRecurrence[{15,-75,125},{0,5,100},20] (* Harvey P. Dale, Dec 30 2011 *)
-
a(n)=n^2*5^n \\ Charles R Greathouse IV, May 16 2018
A128785
a(n) = n^2*6^n.
Original entry on oeis.org
0, 6, 144, 1944, 20736, 194400, 1679616, 13716864, 107495424, 816293376, 6046617600, 43898443776, 313456656384, 2207257288704, 15359376162816, 105791621529600, 722204136308736, 4891804579528704, 32905425960566784
Offset: 0
-
[n^2*6^n: n in [0..20]]; // Vincenzo Librandi, Oct 04 2011
-
Table[n^2 6^n,{n,0,30}] (* or *) LinearRecurrence[{18,-108,216},{0,6,144},30] (* Harvey P. Dale, Oct 03 2011 *)
Original entry on oeis.org
0, 7, 196, 3087, 38416, 420175, 4235364, 40353607, 368947264, 3268642167, 28247524900, 239256535903, 1993145356944, 16374242758783, 132931722278404, 1068201339737175, 8507630225817856, 67230218542302823, 527606005722985476
Offset: 0