A293609
Triangle read by rows, a refinement of the central Stirling numbers of the first kind A187646, T(n, k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 7, 4, 0, 90, 120, 15, 0, 1701, 3696, 1316, 56, 0, 42525, 129780, 84630, 12180, 210, 0, 1323652, 5233404, 5184894, 1492744, 104049, 792, 0, 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
Offset: 0
Triangle starts:
[0] 1
[1] 1, 0
[2] 7, 4, 0
[3] 90, 120, 15, 0
[4] 1701, 3696, 1316, 56, 0
[5] 42525, 129780, 84630, 12180, 210, 0
[6] 1323652, 5233404, 5184894, 1492744, 104049, 792, 0
[7] 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
-
for n in [$0..9] do seq(A293616(n, n, k), k=0..n) od;
-
A293609Row[n_] := If[n==0, {1}, Join[CoefficientList[x^(-n) (1 - x)^(2n) PolyLog[-2n, n, x] /. Log[1 - x] -> 0, x], {0}]];
Table[A293609Row[n], {n, 0, 7}] // Flatten
A293926
Triangle read by rows, T(n, k) = Pochhammer(n, k) * Stirling2(2*n, k + n) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 7, 12, 6, 90, 195, 180, 60, 1701, 4200, 5320, 3360, 840, 42525, 114135, 176400, 157500, 75600, 15120, 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640, 49329280, 146386240, 287567280, 379387008, 332972640, 186666480, 60540480, 8648640
Offset: 0
Triangle starts:
[0] 1
[1] 1, 1
[2] 7, 12, 6
[3] 90, 195, 180, 60
[4] 1701, 4200, 5320, 3360, 840
[5] 42525, 114135, 176400, 157500, 75600, 15120
[6] 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640
-
A293926 := (n, k) -> A293617(n, n, k ):
seq(seq(A293926(n, k), k=0..n), n=0..7);
-
A293617[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
A293926Row[n_] := Table[A293617[n, n, k], {k, 0, n}];
Table[A293926Row[n], {n, 0, 7}] // Flatten
-
for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, ((n+k-1)!/(n-1)!)*stirling(2*n, n + k, 2)), ", "))) \\ G. C. Greubel, Nov 19 2017
A324241
Number of set partitions of [2n] where each subset is again partitioned into n nonempty subsets.
Original entry on oeis.org
1, 2, 10, 100, 1736, 42651, 1324114, 49330996, 2141770488, 106175420065, 5917585057033, 366282501223002, 24930204592110338, 1850568574258750360, 148782988064395367700, 12879868072770703598760, 1194461517469808134322280, 118144018577011379763287565
Offset: 0
a(2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)
*binomial(n-1, j-1)*Stirling2(j, k), j=k..n))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..18);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n-j, k]* Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]];
a[n_] := b[2n, n];
a /@ Range[0, 18] (* Jean-François Alcover, May 05 2020, after Maple *)
-
a(n) = if(n==0, 1, stirling(2*n, n, 2)+binomial(2*n, n)/2); \\ Seiichi Manyama, May 08 2022
A354797
Triangle read by rows. T(n, k) = |Stirling1(n, k)| * Stirling2(n + k, n) = A132393(n, k) * A048993(n + k, n).
Original entry on oeis.org
1, 0, 1, 0, 3, 7, 0, 12, 75, 90, 0, 60, 715, 2100, 1701, 0, 360, 7000, 36750, 69510, 42525, 0, 2520, 72884, 595350, 1940295, 2692305, 1323652, 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280, 0, 181440, 9801000, 156008160, 1076453763, 3723239520, 6733767040, 6065579520, 2141764053
Offset: 0
Table T(n, k) begins:
[0] 1
[1] 0, 1
[2] 0, 3, 7
[3] 0, 12, 75, 90
[4] 0, 60, 715, 2100, 1701
[5] 0, 360, 7000, 36750, 69510, 42525
[6] 0, 2520, 72884, 595350, 1940295, 2692305, 1323652
[7] 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280
-
T := (n, k) -> abs(Stirling1(n, k))*Stirling2(n + k, n):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
A354977
Triangle read by rows. T(n, k) = Sum_{j=0..n}((-1)^(n-j)*binomial(n, j)*j^(n+k)) / n!.
Original entry on oeis.org
1, 1, 1, 1, 3, 7, 1, 6, 25, 90, 1, 10, 65, 350, 1701, 1, 15, 140, 1050, 6951, 42525, 1, 21, 266, 2646, 22827, 179487, 1323652, 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280, 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053
Offset: 0
Triangle T(n, k) begins:
[0] 1;
[1] 1, 1;
[2] 1, 3, 7;
[3] 1, 6, 25, 90;
[4] 1, 10, 65, 350, 1701;
[5] 1, 15, 140, 1050, 6951, 42525;
[6] 1, 21, 266, 2646, 22827, 179487, 1323652;
[7] 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280;
[8] 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053;
-
T := (n, k) -> add((-1)^(n - j)*binomial(n, j)*j^(n + k), j = 0..n) / n!:
seq(seq(T(n, k), k = 0..n), n = 0..8);
A383869
a(n) = [x^n] 1/Product_{k=0..n} (1 - (n+k)*x).
Original entry on oeis.org
1, 3, 55, 1890, 95781, 6427575, 537306484, 53791898160, 6275077781973, 835898091070185, 125195263380478655, 20825548503275385870, 3809430011164368694260, 759987002381075483922180, 164221938436980055710082200, 38209754165858724861944820000, 9524153723280871205135022364485
Offset: 0
-
Table[SeriesCoefficient[1/Product[(1 - (n + k)*x), {k, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 17 2025 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*(n+k)^(2*n)*binomial(n, k))/n!;
A383882
a(n) = [x^n] Product_{k=1..4*n} 1/(1 - k*x).
Original entry on oeis.org
1, 10, 750, 106470, 22350954, 6220194750, 2157580085700, 896587036640680, 434225240080346858, 240175986308550372366, 149377949042637543000150, 103192471874508023383125750, 78394850841083734162487127720, 64957213308036504429927388238088, 58298851680969051596827194829579744
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 4*n}], {x, 0, n}], {n, 0, 15}]
Table[StirlingS2[5*n, 4*n], {n, 0, 15}]
Table[SeriesCoefficient[1/(Pochhammer[1 - 1/x, 4*n]*x^(4*n)), {x, 0, n}], {n, 0, 15}]
A187647
Partial sums of the central Stirling numbers of the second kind.
Original entry on oeis.org
1, 2, 9, 99, 1800, 44325, 1367977, 50697257, 2192461310, 108367857065, 6025952821720, 372308453692006, 25302513044450266, 1875871087298000326, 150658859151673309726, 13030526931922299349726, 1207492044401730133131811
Offset: 0
-
seq(sum(combinat[stirling2](2*k,k),k=0..n),n=0..12);
-
Table[Sum[StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
-
makelist(sum(stirling2(2*k,k),k,0,n),n,0,12);
A218671
O.g.f.: Sum_{n>=0} n^(2*n) * (1+n*x)^n * x^n/n! * exp(-n^2*x*(1+n*x)).
Original entry on oeis.org
1, 1, 8, 120, 2635, 76503, 2764957, 119634152, 6030195490, 347037131298, 22453144758980, 1613322276606404, 127466755375275614, 10983423290600347408, 1025046637630590359928, 103004615955568528609200, 11088429267977228122393005, 1273093489376335864500416685
Offset: 0
O.g.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 2635*x^4 + 76503*x^5 +...
where
A(x) = 1 + (1+x)*x*exp(-x*(1+x)) + 2^4*(1+2*x)^2*x^2/2!*exp(-2^2*x*(1+2*x)) + 3^6*(1+3*x)^3*x^3/3!*exp(-3^2*x*(1+3*x)) + 4^8*(1+4*x)^4*x^4/4!*exp(-4^2*x*(1+4*x)) + 5^10*(1+5*x)^5*x^5/5!*exp(-5^2*x*(1+5*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)= my(A=sum(k=0, n, k^(2*k)*(1+k*x)^k*x^k/k!*exp(-k^2*x*(1+k*x)+x*O(x^n)))); polcoef(A, n)}
for(n=0,30,print1(a(n),", "))
A220282
E.g.f.: 1/(1-x) = Sum_{n>=0} a(n) * exp(-n^2*x) * x^n/n!.
Original entry on oeis.org
1, 1, 4, 51, 1480, 79765, 7010496, 920281831, 169526669824, 41844075277545, 13357347571244800, 5362349333225289691, 2646862288162043664384, 1576780272924188221429501, 1116120717235502072828661760, 926421799655193830945493519375, 891516461371835173578650979598336
Offset: 0
E.g.f.: 1/(1-x) = 1 + 1*exp(-x)*x + 4*exp(-2^2*x)*x^2/2! + 51*exp(-3^2*x)*x^3/3! + 1480*exp(-4^2*x)*x^4/4! + 79765*exp(-5^2*x)*x^5/5! + 7010496*exp(-6^2*x)*x^6/6!+...
-
{a(n)=n!*polcoeff(1/(1-x+x*O(x^n))-sum(k=0,n-1,a(k)*x^k/k!*exp(-k^2*x+x*O(x^n))), n)}
for(n=0,16,print1(a(n),", "))
Comments