cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 69 results. Next

A293609 Triangle read by rows, a refinement of the central Stirling numbers of the first kind A187646, T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 7, 4, 0, 90, 120, 15, 0, 1701, 3696, 1316, 56, 0, 42525, 129780, 84630, 12180, 210, 0, 1323652, 5233404, 5184894, 1492744, 104049, 792, 0, 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
Offset: 0

Views

Author

Peter Luschny, Oct 15 2017

Keywords

Examples

			Triangle starts:
[0]        1
[1]        1,         0
[2]        7,         4,         0
[3]       90,       120,        15,         0
[4]     1701,      3696,      1316,        56,        0
[5]    42525,    129780,     84630,     12180,      210,      0
[6]  1323652,   5233404,   5184894,   1492744,   104049,    792,    0
[7] 49329280, 240240000, 326426100, 151251100, 22840818, 852852, 3003, 0
		

Crossrefs

Row sums are A187646. T(n, 0) = A007820(n) the central Stirling numbers of the second kind A048993. T(n, n-1) = A001791(n) for n>=1.
Cf. A293616.

Programs

  • Maple
    for n in [$0..9] do seq(A293616(n, n, k), k=0..n) od;
  • Mathematica
    A293609Row[n_] := If[n==0, {1}, Join[CoefficientList[x^(-n) (1 - x)^(2n) PolyLog[-2n, n, x] /. Log[1 - x] -> 0, x], {0}]];
    Table[A293609Row[n], {n, 0, 7}] // Flatten

Formula

T(n, k) = A293616(n, n, k) for k = 0..n. The main diagonal in terms of rows (!) of the array of triangles A293616. T_row(n) is row n of triangle A293616(n,.,.), i.e. T_row(0) = [1] is row 0 of A000007, T_row(1) = [1, 0] is row 1 of A173018, T_row(2) = [7, 4, 0] is row 2 of A062253, and so on.
Let h(n) = x^(-n)*(1 - x)^(2*n)*PolyLog(-2*n, n, x) and p(n) the polynomial given by the expansion of h(n) after replacing log(1 - x) by 0. Then T(n, k) is the k-th coefficient of p(n) for 0 <= k < n.

A293926 Triangle read by rows, T(n, k) = Pochhammer(n, k) * Stirling2(2*n, k + n) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 7, 12, 6, 90, 195, 180, 60, 1701, 4200, 5320, 3360, 840, 42525, 114135, 176400, 157500, 75600, 15120, 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640, 49329280, 146386240, 287567280, 379387008, 332972640, 186666480, 60540480, 8648640
Offset: 0

Views

Author

Peter Luschny, Oct 22 2017

Keywords

Examples

			Triangle starts:
[0]       1
[1]       1,       1
[2]       7,      12,       6
[3]      90,     195,     180,      60
[4]    1701,    4200,    5320,    3360,     840
[5]   42525,  114135,  176400,  157500,   75600,   15120
[6] 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640
		

Crossrefs

T(n,0) = Stirling2(2*n,n) = A007820(n), T(n,n) = A000407(n).
Cf. A293617.

Programs

  • Maple
    A293926 := (n, k) -> A293617(n, n, k ):
    seq(seq(A293926(n, k), k=0..n), n=0..7);
  • Mathematica
    A293617[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
    A293926Row[n_] := Table[A293617[n, n, k], {k, 0, n}];
    Table[A293926Row[n], {n, 0, 7}] // Flatten
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, ((n+k-1)!/(n-1)!)*stirling(2*n, n + k, 2)), ", "))) \\ G. C. Greubel, Nov 19 2017

Formula

T(n, k) = A293617(n, n, k).

A324241 Number of set partitions of [2n] where each subset is again partitioned into n nonempty subsets.

Original entry on oeis.org

1, 2, 10, 100, 1736, 42651, 1324114, 49330996, 2141770488, 106175420065, 5917585057033, 366282501223002, 24930204592110338, 1850568574258750360, 148782988064395367700, 12879868072770703598760, 1194461517469808134322280, 118144018577011379763287565
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2019

Keywords

Examples

			a(2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)
          *binomial(n-1, j-1)*Stirling2(j, k), j=k..n))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n-j, k]* Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]];
    a[n_] := b[2n, n];
    a /@ Range[0, 18] (* Jean-François Alcover, May 05 2020, after Maple *)
  • PARI
    a(n) = if(n==0, 1, stirling(2*n, n, 2)+binomial(2*n, n)/2); \\ Seiichi Manyama, May 08 2022

Formula

a(n) = A324162(2n,n).
a(n) = A007820(n) + A088218(n) for n > 0. - Seiichi Manyama, May 08 2022

A354797 Triangle read by rows. T(n, k) = |Stirling1(n, k)| * Stirling2(n + k, n) = A132393(n, k) * A048993(n + k, n).

Original entry on oeis.org

1, 0, 1, 0, 3, 7, 0, 12, 75, 90, 0, 60, 715, 2100, 1701, 0, 360, 7000, 36750, 69510, 42525, 0, 2520, 72884, 595350, 1940295, 2692305, 1323652, 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280, 0, 181440, 9801000, 156008160, 1076453763, 3723239520, 6733767040, 6065579520, 2141764053
Offset: 0

Views

Author

Peter Luschny, Jun 06 2022

Keywords

Examples

			Table T(n, k) begins:
[0] 1
[1] 0,     1
[2] 0,     3,      7
[3] 0,    12,     75,      90
[4] 0,    60,    715,    2100,     1701
[5] 0,   360,   7000,   36750,    69510,     42525
[6] 0,  2520,  72884,  595350,  1940295,   2692305,   1323652
[7] 0, 20160, 814968, 9549120, 47030445, 109794300, 120023904, 49329280
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> abs(Stirling1(n, k))*Stirling2(n + k, n):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;

Formula

Sum_{k=0..n} (-1)^(n - k)*T(n, k) = n^n. - Werner Schulte, Jun 03 2022 in A000312. [Formerly a conjecture, now proved by Mike Earnest, see link.]
T(n, k) = A132393(n, k) * A354977(n, k) = (1/n!) * Sum_{j=0..n} (-1)^(j + k) * binomial(n, j) * Stirling1(n, k) * j^(n + k).

A354977 Triangle read by rows. T(n, k) = Sum_{j=0..n}((-1)^(n-j)*binomial(n, j)*j^(n+k)) / n!.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 1, 6, 25, 90, 1, 10, 65, 350, 1701, 1, 15, 140, 1050, 6951, 42525, 1, 21, 266, 2646, 22827, 179487, 1323652, 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280, 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053
Offset: 0

Views

Author

Peter Luschny, Jun 15 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0] 1;
[1] 1,  1;
[2] 1,  3,   7;
[3] 1,  6,  25,    90;
[4] 1, 10,  65,   350,   1701;
[5] 1, 15, 140,  1050,   6951,   42525;
[6] 1, 21, 266,  2646,  22827,  179487,  1323652;
[7] 1, 28, 462,  5880,  63987,  627396,  5715424,  49329280;
[8] 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053;
		

Crossrefs

T(n,1) = A000217, T(n,n) = A007820, A354978 (row sums), A048993.

Programs

  • Maple
    T := (n, k) -> add((-1)^(n - j)*binomial(n, j)*j^(n + k), j = 0..n) / n!:
    seq(seq(T(n, k), k = 0..n), n = 0..8);

Formula

T(n, k) = Stirling2(n + k, n).

A383869 a(n) = [x^n] 1/Product_{k=0..n} (1 - (n+k)*x).

Original entry on oeis.org

1, 3, 55, 1890, 95781, 6427575, 537306484, 53791898160, 6275077781973, 835898091070185, 125195263380478655, 20825548503275385870, 3809430011164368694260, 759987002381075483922180, 164221938436980055710082200, 38209754165858724861944820000, 9524153723280871205135022364485
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Central terms of triangle A143395.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[(1 - (n + k)*x), {k, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 17 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(n+k)^(2*n)*binomial(n, k))/n!;

Formula

a(n) = (1/n!) * Sum_{k=0..n} (-1)^(n-k) * (n+k)^(2*n) * binomial(n,k).
a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*n,n+k) * Stirling2(n+k,n).
a(n) = Sum_{k=0..n} (-1)^k * (2*n)^(n-k) * binomial(2*n,n+k) * Stirling2(n+k,n).
a(n) ~ (r-1)^((r-1)*n) * (1+r)^(2*n + 1) * exp(n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + (4-r)*r)) * r^(r*n)), where r = 2.106565648173949260853515992430777519716829316322... is the root of the equation exp(2/(1+r)) = r/(r-1). - Vaclav Kotesovec, May 17 2025

A383882 a(n) = [x^n] Product_{k=1..4*n} 1/(1 - k*x).

Original entry on oeis.org

1, 10, 750, 106470, 22350954, 6220194750, 2157580085700, 896587036640680, 434225240080346858, 240175986308550372366, 149377949042637543000150, 103192471874508023383125750, 78394850841083734162487127720, 64957213308036504429927388238088, 58298851680969051596827194829579744
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2025

Keywords

Comments

In general, for m>=1, Stirling2((m+1)*n, m*n) ~ (-1)^(m*n) * (m+1)^((m+1)*n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + w(m))) * exp(n) * m^(m*n + 1/2) * w(m)^(m*n) * (1 + 1/m + w(m))^n), where w(m) = LambertW(-(1 + 1/m)/exp(1 + 1/m)).

Crossrefs

Cf. A007820 (m=1), A348084 (m=2), A383881 (m=3).
Cf. A217913.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 4*n}], {x, 0, n}], {n, 0, 15}]
    Table[StirlingS2[5*n, 4*n], {n, 0, 15}]
    Table[SeriesCoefficient[1/(Pochhammer[1 - 1/x, 4*n]*x^(4*n)), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = Stirling2(5*n,4*n).
a(n) ~ 5^(5*n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + w)) * exp(n) * 4^(4*n + 1/2) * w^(4*n) * (5/4 + w)^n), where w = LambertW(-5/(4*exp(5/4))).

A187647 Partial sums of the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 9, 99, 1800, 44325, 1367977, 50697257, 2192461310, 108367857065, 6025952821720, 372308453692006, 25302513044450266, 1875871087298000326, 150658859151673309726, 13030526931922299349726, 1207492044401730133131811
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(combinat[stirling2](2*k,k),k=0..n),n=0..12);
  • Mathematica
    Table[Sum[StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
  • Maxima
    makelist(sum(stirling2(2*k,k),k,0,n),n,0,12);

Formula

a(n) = sum_{k=0..n} A048993(2*k,k).
a(n+1)-a(n) = A007820(n+1).
a(n) ~ n^n * 2^(2*n) / (sqrt(2*Pi*(1-c)*n) * exp(n) * (2-c)^n * c^n), where c = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, May 11 2014

A218671 O.g.f.: Sum_{n>=0} n^(2*n) * (1+n*x)^n * x^n/n! * exp(-n^2*x*(1+n*x)).

Original entry on oeis.org

1, 1, 8, 120, 2635, 76503, 2764957, 119634152, 6030195490, 347037131298, 22453144758980, 1613322276606404, 127466755375275614, 10983423290600347408, 1025046637630590359928, 103004615955568528609200, 11088429267977228122393005, 1273093489376335864500416685
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

Examples

			O.g.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 2635*x^4 + 76503*x^5 +...
where
A(x) = 1 + (1+x)*x*exp(-x*(1+x)) + 2^4*(1+2*x)^2*x^2/2!*exp(-2^2*x*(1+2*x)) + 3^6*(1+3*x)^3*x^3/3!*exp(-3^2*x*(1+3*x)) + 4^8*(1+4*x)^4*x^4/4!*exp(-4^2*x*(1+4*x)) + 5^10*(1+5*x)^5*x^5/5!*exp(-5^2*x*(1+5*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)= my(A=sum(k=0, n, k^(2*k)*(1+k*x)^k*x^k/k!*exp(-k^2*x*(1+k*x)+x*O(x^n)))); polcoef(A, n)}
    for(n=0,30,print1(a(n),", "))

A220282 E.g.f.: 1/(1-x) = Sum_{n>=0} a(n) * exp(-n^2*x) * x^n/n!.

Original entry on oeis.org

1, 1, 4, 51, 1480, 79765, 7010496, 920281831, 169526669824, 41844075277545, 13357347571244800, 5362349333225289691, 2646862288162043664384, 1576780272924188221429501, 1116120717235502072828661760, 926421799655193830945493519375, 891516461371835173578650979598336
Offset: 0

Views

Author

Paul D. Hanna, Dec 11 2012

Keywords

Comments

Compare to the identity: 1/(1-x) = Sum_{n>=0} n^n * exp(-n*x) * x^n/n!.
Compare to the o.g.f. of A007820:
Sum_{n>=0} S2(2*n,n)*x^n = Sum_{n>=0} (n^2)^n * exp(-n^2*x) * x^n/n!.

Examples

			E.g.f.: 1/(1-x) = 1 + 1*exp(-x)*x + 4*exp(-2^2*x)*x^2/2! + 51*exp(-3^2*x)*x^3/3! + 1480*exp(-4^2*x)*x^4/4! + 79765*exp(-5^2*x)*x^5/5! + 7010496*exp(-6^2*x)*x^6/6!+...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(1/(1-x+x*O(x^n))-sum(k=0,n-1,a(k)*x^k/k!*exp(-k^2*x+x*O(x^n))), n)}
    for(n=0,16,print1(a(n),", "))
Previous Showing 51-60 of 69 results. Next