cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 152 results. Next

A214974 Numbers k for which A116543(k) = A007895(k); i.e., the Lucas and Zeckendorf representations of k have the same length.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 14, 15, 17, 22, 27, 28, 36, 38, 41, 43, 44, 46, 52, 58, 59, 61, 62, 66, 69, 74, 75, 81, 84, 94, 95, 96, 98, 107, 112, 114, 117, 119, 120, 122, 128, 131, 136, 139, 148, 152, 153, 154, 155, 159, 161, 164, 173, 175, 176, 181, 182, 184, 185
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2012

Keywords

Examples

			k...Lucas.....Zeckendorf....counter
1...1.........1.............a(1)= 1
2...2.........2.............a(2)= 2
3...3.........3.............a(3)= 3
4...4.........3+1
5...4+1.......5
6...4+2.......5+1...........a(4)= 6
7...7.........5+2
8...7+1.......8
9...7+2.......8+1...........a(5)= 9
		

Crossrefs

Programs

  • Mathematica
    u = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 50}]]];
    u1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, u]][[2,1]], # > 0 &]] &, Range[1000]];
    v = Reverse[Table[Fibonacci[n + 1], {n, 1, 50}]];
    v1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, v]][[2,1]], # > 0 &]] &, Range[1000]];
    s[n_] := If[u1[[n]] == v1[[n]], 1, 0];
    s1 = Table[s[n], {n, 1, 200}];
    f1 = Flatten[Position[s1, 1]] (* A214974 *)
    s[n_] := If[u1[[n]] < v1[[n]], 1, 0];
    s2 = Table[s[n], {n, 1, 200}];
    f2 = Flatten[Position[s2, 1]] (* A214975 *)
    s[n_] := If[u1[[n]] > v1[[n]], 1, 0];
    s3 = Table[s[n], {n, 1, 200}];
    f3 = Flatten[Position[s3, 1]] (* A214976 *)
    (* Peter J. C. Moses *)

A214975 Numbers k for which A116543(k) < A007895(k); i.e., the Lucas representation of k is shorter than the Zeckendorf representation.

Original entry on oeis.org

4, 7, 11, 12, 18, 19, 20, 25, 29, 30, 31, 32, 33, 40, 47, 48, 49, 50, 51, 53, 54, 65, 67, 72, 76, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 101, 105, 106, 108, 109, 116, 123, 124, 125, 126, 127, 129, 130, 132, 133, 134, 135, 137, 138, 140, 141, 142, 143, 156
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2012

Keywords

Examples

			k...Lucas.....Zeckendorf....counter
1...1.........1
2...2.........2
3...3.........3
4...4.........3+1...........a(1) = 4
5...4+1.......5
6...4+2.......5+1
7...7.........5+2...........a(2) = 7
8...7+1.......8
9...7+2.......8+1
		

Crossrefs

Programs

A214976 Numbers k for which A116543(k) > A007895(k); i.e., the Lucas representation of k is longer than the Zeckendorf representation.

Original entry on oeis.org

5, 8, 13, 16, 21, 23, 24, 26, 34, 35, 37, 39, 42, 45, 55, 56, 57, 60, 63, 64, 68, 70, 71, 73, 89, 90, 91, 92, 93, 97, 99, 100, 102, 103, 104, 110, 111, 113, 115, 118, 121, 144, 145, 146, 147, 149, 150, 151, 157, 158, 160, 162, 165, 166, 167, 168, 169, 178
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2012

Keywords

Examples

			k...Lucas.....Zeckendorf....counter
1...1.........1
2...2.........2
3...3.........3
4...4.........3+1
5...4+1.......5.............a(1) = 5
6...4+2.......5+1
7...7.........5+2
8...7+1.......8.............a(2) = 8
9...7+2.......8+1
		

Crossrefs

Programs

A361755 Irregular triangle T(n, k), n >= 0, k = 1..2^A007895(n), read by rows; the n-th row lists the numbers k such that the Fibonacci numbers that appear in the Zeckendorf representation of k also appear in that of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 1, 3, 4, 0, 5, 0, 1, 5, 6, 0, 2, 5, 7, 0, 8, 0, 1, 8, 9, 0, 2, 8, 10, 0, 3, 8, 11, 0, 1, 3, 4, 8, 9, 11, 12, 0, 13, 0, 1, 13, 14, 0, 2, 13, 15, 0, 3, 13, 16, 0, 1, 3, 4, 13, 14, 16, 17, 0, 5, 13, 18, 0, 1, 5, 6, 13, 14, 18, 19, 0, 2, 5, 7, 13, 15, 18, 20
Offset: 0

Views

Author

Rémy Sigrist, Mar 23 2023

Keywords

Comments

In other words, the n-th row lists the numbers k such that A003714(n) AND A003714(k) = A003714(k) (where AND denotes the bitwise AND operator).
The Zeckendorf representation is also known as the greedy Fibonacci representation (see A356771 for further details).

Examples

			Triangle T(n, k) begins:
  n   n-th row
  --  ------------------------
   0  0
   1  0, 1
   2  0, 2
   3  0, 3
   4  0, 1, 3, 4
   5  0, 5
   6  0, 1, 5, 6
   7  0, 2, 5, 7
   8  0, 8
   9  0, 1, 8, 9
  10  0, 2, 8, 10
  11  0, 3, 8, 11
  12  0, 1, 3, 4, 8, 9, 11, 12
		

Crossrefs

See A361756 for a similar sequence.

Programs

  • PARI
    See Links section.

Formula

T(n, 1) = 0.
T(n, 2) = A139764(n) for any n > 0.
T(n, 2^A007895(n)) = n.

A377208 a(n) is the number of iterations that n requires to reach a noninteger or a Fibonacci number under the map x -> x / z(x), where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k; a(n) = 0 if n is a Fibonacci number.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 0, 2, 1, 1, 1, 2, 1, 1, 0, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 0, 3, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 20 2024

Keywords

Comments

The Fibonacci numbers are the fixed points of the map, since z(Fibonacci(k)) = 1 for all k >= 1. Therefore they are arbitrarily assigned the value a(Fibonacci(k)) = 0.
Each number n starts a chain of a(n) integers: n, n/z(n), (n/z(n))/z(n/z(n)), ..., of them the first a(n)-1 integers are Zeckendorf-Niven numbers (A328208).

Examples

			a(12) = 2 since 12/z(12) = 4 and 4/z(4) = 2 is a Fibonacci number that is reached after 2 iterations.
a(36) = 3 since 36/z(36) = 18, 18/z(18) = 9 and 9/z(9) = 9/2 is a noninteger that is reached after 3 iterations.
		

Crossrefs

Cf. A000005, A000045, A007895, A328208, A376615 (binary analog), A377209, A377210.

Programs

  • Mathematica
    zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
    a[n_] := a[n] = Module[{z = zeck[n]}, If[z == 1, 0, If[!Divisible[n, z], 1, 1 + a[n/z]]]]; Array[a, 100]
  • PARI
    zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) \\ Charles R Greathouse IV at A007895
    a(n) = {my(z = zeck(n)); if(z == 1, 0, if(n % z, 1, 1 + a(n/z)));}

Formula

a(n) = 0 if and only if n is in A000045 (by definition).
a(n) >= 2 if and only if n is in A328208 \ A000079 (i.e., n is a Zeckendorf-Niven number that is not a Fibonacci number).
a(n) >= 3 if and only if n is in A377209 \ A000079.
a(n) >= 4 if and only if n is in A377210 \ A000079.
a(n) < A000005(n).

A379175 Irregular triangle T(n, k), n >= 0, k = 1..ceiling(2^(A007895(n)-1)); the n-th row lists the nonnegative integers m such that A184617(m) = A003714(n).

Original entry on oeis.org

0, 1, 2, 4, 3, 5, 8, 7, 9, 6, 10, 16, 15, 17, 14, 18, 12, 20, 11, 13, 19, 21, 32, 31, 33, 30, 34, 28, 36, 27, 29, 35, 37, 24, 40, 23, 25, 39, 41, 22, 26, 38, 42, 64, 63, 65, 62, 66, 60, 68, 59, 61, 67, 69, 56, 72, 55, 57, 71, 73, 54, 58, 70, 74, 48, 80, 47, 49, 79, 81
Offset: 0

Views

Author

Rémy Sigrist, Dec 17 2024

Keywords

Comments

Also the nonnegative terms of A379147, in order of appearance.
This sequence is a permutation of the nonnegative integers with inverse A379176.
This sequence shares graphical features with A368225.

Examples

			Triangle T(n, k) begins:
  n   n-th row
  --  --------------
   0  0
   1  1
   2  2
   3  4
   4  3, 5
   5  8
   6  7, 9
   7  6, 10
   8  16
   9  15, 17
  10  14, 18
  11  12, 20
  12  11, 13, 19, 21
  13  32
  14  31, 33
  15  30, 34
		

Crossrefs

Programs

  • PARI
    tozeck(n) = { for (i=0, oo, if (n<=fibonacci(2+i), my (v=0, f); forstep (j=i, 0, -1, if (n>=f=fibonacci(2+j), n-=f; v+=2^j;); if (n==0, return (v););););); }
    row(n) = { my (z = tozeck(n), r = [0], b); while (z, z -= b = 2^valuation(z, 2); r = concat([v - b | v <- r], [v + b | v <- r]);); return (select(v -> v >= 0, r)); }

Formula

T(n, ceiling(2^(A007895(n)-1))) = A003714(n).

A324901 a(n) = A007895(A324900(n)).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 2, 4, 2, 4, 3, 6, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 6, 5, 2, 3, 2, 7, 4, 4, 3, 7, 2, 4, 4, 5, 2, 7, 2, 6, 6, 4, 2, 7, 3, 6, 4, 6, 2, 5, 4, 4, 4, 4, 2, 5, 2, 4, 5, 7, 4, 7, 2, 6, 4, 5, 2, 8, 2, 4, 5, 6, 3, 8, 2, 9, 8, 4, 2, 5, 4, 4, 4, 11, 2, 6, 4, 6, 4, 4, 4, 10, 2, 6, 5, 5, 2, 8, 2, 11, 8
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A000032(n) = (fibonacci(n+1)+fibonacci(n-1));
    A324900(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = A000032(2*(1+primepi(f[i, 1])))); factorback(f); };
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A324901(n) = A007895(A324900(n));

Formula

a(n) = A007895(A324900(n)).

A374960 Numbers k such that 2^k and 2^(k+1) have the same number of terms in their Zeckendorf representation (A007895).

Original entry on oeis.org

0, 5, 6, 7, 11, 18, 20, 25, 39, 52, 61, 96, 104, 157, 176, 199, 206, 210, 279, 326, 333, 339, 369, 380, 397, 411, 426, 473, 542, 576, 743, 860, 898, 921, 961, 970, 993, 1024, 1043, 1049, 1100, 1121, 1176, 1184, 1193, 1199, 1206, 1230, 1253, 1376, 1380, 1387, 1435
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2024

Keywords

Comments

Numbers k such that A020908(k) = A020908(k+1).
The corresponding values of A020908(k) are 1, 3, 3, 3, 6, 7, 8, 9, 18, 20, 28, 44, 37, ... .

Examples

			0 is a term since the Zeckendorf representation of 2^0 = 1 is A014417(1) = 1, and the Zeckendorf representation of 2^1 = 2 is A014417(2) = 10, so A020908(0) = A020908(1) = 1.
5 is a term since the Zeckendorf representation of 2^5 = 32 is A014417(32) = 1010100, and the Zeckendorf representation of 2^6 = 64 is A014417(64) = 100010001, so A020908(5) = A020908(6) = 3.
		

Crossrefs

A374961 is a subsequence.

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
    s[n_] := s[n] = z[2^n]; Select[Range[0, 1500], s[#] == s[# + 1] &]
  • PARI
    A007895(n)=if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
    lista(kmax) = {my(z1 = A007895(1), z2); for(k = 1, kmax, z2 = A007895(2^k); if(z1 == z2, print1(k-1 , ", ")); z1 = z2);}

A379147 Irregular triangle T(n, k), n >= 0, k = 1..2^A007895(n), read by rows; the n-th row lists the integers m such that A184617(abs(m)) = A003714(n).

Original entry on oeis.org

0, -1, 1, -2, 2, -4, 4, -5, -3, 3, 5, -8, 8, -9, -7, 7, 9, -10, -6, 6, 10, -16, 16, -17, -15, 15, 17, -18, -14, 14, 18, -20, -12, 12, 20, -21, -19, -13, -11, 11, 13, 19, 21, -32, 32, -33, -31, 31, 33, -34, -30, 30, 34, -36, -28, 28, 36
Offset: 0

Views

Author

Rémy Sigrist, Dec 16 2024

Keywords

Comments

A permutation of the integers (Z).
For any n >= 0:
- in the Zeckendorf expansion of n,
- replace each Fibonacci number, say A000045(2+i) with i >= 0, by 2^i or -2^i,
- the various values obtained make up the n-th row.

Examples

			Triangle T(n, k) begins:
  n   n-th row
  --  ----------------------------------
   0  0
   1  -1, 1
   2  -2, 2
   3  -4, 4
   4  -5, -3, 3, 5
   5  -8, 8
   6  -9, -7, 7, 9
   7  -10, -6, 6, 10
   8  -16, 16
   9  -17, -15, 15, 17
  10  -18, -14, 14, 18
  11  -20, -12, 12, 20
  12  -21, -19, -13, -11, 11, 13, 19, 21
  13  -32, 32
  14  -33, -31, 31, 33
  15  -34, -30, 30, 34
		

Crossrefs

Programs

  • PARI
    tozeck(n) = { for (i=0, oo, if (n<=fibonacci(2+i), my (v=0, f); forstep (j=i, 0, -1, if (n>=f=fibonacci(2+j), n-=f; v+=2^j;); if (n==0, return (v););););); }
    row(n) = { my (z = tozeck(n), r = [0], b); while (z, z -= b = 2^valuation(z, 2); r = concat([v - b | v <- r], [v + b | v <- r]);); return (r); }

Formula

T(n, 1) = -A003714(n).
T(n, 2^A007895(n)) = A003714(n).
T(n, k) = -T(n, 2^A007895(n)+1-k) for k = 1..2^A007895(n).

A374961 Numbers k such that 2^k, 2^(k+1) and 2^(k+2) have the same number of terms in their Zeckendorf representation (A007895).

Original entry on oeis.org

5, 6, 1931, 4127, 26584
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2024

Keywords

Comments

Numbers k such that A020908(k) = A020908(k+1) = A020908(k+2).
The corresponding values of A020908(k) are 3, 3, 763, 1660, 10596, ... .
a(6) > 10^5, if it exists.

Examples

			5 is a term since A020908(5) = A020908(6) = A020908(7) = 3.
763 is a term since A020908(1931) = A020908(1932) = A020908(1933) = 763.
		

Crossrefs

Subsequence of A374960.

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
    s[n_] := s[n] = z[2^n]; Select[Range[0, 4200], s[#] == s[# + 1] == s[# + 2] &]
  • PARI
    A007895(n)=if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
    lista(kmax) = {my(z1 = A007895(1), z2 = A007895(2), z3); for(k = 2, kmax, z3 = A007895(2^k); if(z1 == z2 && z2 == z3, print1(k-2 , ", ")); z1 = z2; z2 = z3);}
Previous Showing 11-20 of 152 results. Next