cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 282 results. Next

A303709 Number of periodic factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

A periodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities have a common divisor greater than 1. Note that a factorization of a number that is not a perfect power (A007916) is always aperiodic (A303386), so the indices of nonzero entries of this sequence all lie at perfect powers (A001597).

Examples

			The a(900) = 5 periodic factorizations are (2*2*3*3*5*5), (2*2*15*15), (3*3*10*10), (5*5*6*6), (30*30).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[Select[facsr[n],GCD@@Length/@Split[#]!=1&]],{n,200}]
  • PARI
    gcd_of_multiplicities(lista) = { my(u=length(lista)); if(u<2, u, my(g=0, pe = lista[1], j=1); for(i=2,u,if(lista[i]==pe, j++, g = gcd(j,g); j=1; pe = lista[i])); gcd(g,j)); }; \\ the supplied lista (newfacs) should be monotonic
    A303709(n, m=n, facs=List([])) = if(1==n, (1!=gcd_of_multiplicities(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&!ispower(d), newfacs = List(facs); listput(newfacs,d); s += A303709(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A303553(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

Changed a(1) to 1 by Gus Wiseman, Dec 06 2018

A278029 a(1) = 0; for n > 1, a(n) = k if n is a non-perfect-power, A007916(k); or 0 if n is a perfect power.

Original entry on oeis.org

0, 1, 2, 0, 3, 4, 5, 0, 0, 6, 7, 8, 9, 10, 11, 0, 12, 13, 14, 15, 16, 17, 18, 19, 0, 20, 0, 21, 22, 23, 24, 0, 25, 26, 27, 0, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 0, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 0, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 0
Offset: 1

Views

Author

N. J. A. Sloane, Nov 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Boole[#2 != #1] #2 &, #] &@ Accumulate@ Array[Boole[And[# > 1, CoprimeQ @@ FactorInteger[#][[All, -1]]]] &, 81] (* Michael De Vlieger, Dec 18 2016 *)

Extensions

Name corrected by Peter Munn, Feb 28 2024

A303945 Triangle whose n-th row lists the multiset of prime indices of the n-th number that is not a perfect power A007916(n).

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 1, 1, 2, 6, 1, 4, 2, 3, 7, 1, 2, 2, 8, 1, 1, 3, 2, 4, 1, 5, 9, 1, 1, 1, 2, 1, 6, 1, 1, 4, 10, 1, 2, 3, 11, 2, 5, 1, 7, 3, 4, 12, 1, 8, 2, 6, 1, 1, 1, 3, 13, 1, 2, 4, 14, 1, 1, 5, 2, 2, 3, 1, 9, 15, 1, 1, 1, 1, 2, 1, 3, 3, 2, 7, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 03 2018

Keywords

Comments

A number is not a perfect power if its prime multiplicities are relatively prime. This triangle is an enumeration of all finite aperiodic multisets of positive integers, where a multiset is aperiodic if its multiplicities are relatively prime.

Examples

			Sequence of numbers that are not perfect powers together with their multisets of prime indices begins:
2:  {1}
3:  {2}
5:  {3}
6:  {1,2}
7:  {4}
10: {1,3}
11: {5}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
29: {10}
30: {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    primeMS/@Select[Range[2,100],GCD@@FactorInteger[#][[All,2]]===1&]

A376588 Inflection and undulation points in the sequence of non-perfect-powers (A007916).

Original entry on oeis.org

3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2024

Keywords

Comments

These are points at which the second differences (A376562) are zero.
Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
with zeros at (A376588):
  3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, ...
		

Crossrefs

The version for A000002 is empty.
For first differences we had A375706, ones A375740, complement A375714.
Positions of zeros in A376562, complement A376589.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A305631 counts integer partitions into non-perfect-powers, factorizations A322452.
A333254 gives run-lengths of differences between consecutive primes.
For non-perfect-powers: A375706 (first differences), A376562 (second differences), A376589 (nonzero curvature).
For second differences: A064113 (prime), A376602 (composite), {} (perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power inclusive), A376600 (non-prime-power inclusive).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Differences[Select[Range[100],radQ],2],0]

A376589 Points of nonzero curvature in the sequence of non-perfect-powers (A007916).

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 18, 20, 23, 24, 26, 27, 38, 39, 52, 53, 68, 69, 86, 87, 106, 107, 109, 110, 111, 112, 126, 127, 150, 151, 176, 177, 195, 196, 203, 204, 220, 221, 232, 233, 264, 265, 298, 299, 316, 317, 333, 334, 371, 372, 411, 412, 453, 454, 480, 481, 496
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2024

Keywords

Comments

These are points at which the second differences (A376562) are nonzero.
Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
with nonzeros at (A376589):
  1, 2, 4, 5, 10, 11, 18, 20, 23, 24, 26, 27, 38, 39, 52, 53, 68, 69, 86, 87, ...
		

Crossrefs

For first differences we had A375706, ones A375740, complement A375714.
These are the positions of nonzeros in A376562, complement A376588.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A305631 counts integer partitions into non-perfect-powers, factorizations A322452.
For non-perfect-powers: A375706 (first differences), A376562 (second differences), A376588 (inflection and undulation points).
For second differences: A064113 (prime), A376602 (composite), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Sign[Differences[Select[Range[1000],radQ],2]],1|-1]

A153147 a(n) = A007916(n)^3.

Original entry on oeis.org

8, 27, 125, 216, 343, 1000, 1331, 1728, 2197, 2744, 3375, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 17576, 21952, 24389, 27000, 29791, 35937, 39304, 42875, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125, 97336, 103823
Offset: 1

Views

Author

Keywords

Comments

2^3=8, 3^3=27, 4^3=64=2^6 is not in the sequence, 5^3=125, 6^3=216, ...

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^3
  • Python
    from sympy import mobius, integer_nthroot
    def A153147(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**3

Extensions

Edited by Ray Chandler, Dec 22 2008

A153157 a(n) = A007916(n)^4.

Original entry on oeis.org

16, 81, 625, 1296, 2401, 10000, 14641, 20736, 28561, 38416, 50625, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 456976, 614656, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2560000, 2825761
Offset: 1

Views

Author

Keywords

Comments

2^4=16,3^4=81,4^4=256=2^8 is not in the sequence,5^4=625,6^4=1296,...

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^4
  • Python
    from sympy import mobius, integer_nthroot
    def A153157(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**4 # Chai Wah Wu, Nov 21 2024

Extensions

Edited by Ray Chandler, Dec 22 2008

A153159 a(n) = A007916(n)^5.

Original entry on oeis.org

32, 243, 3125, 7776, 16807, 100000, 161051, 248832, 371293, 537824, 759375, 1419857, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 11881376, 17210368, 20511149, 24300000, 28629151, 39135393, 45435424
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^5
  • Python
    from sympy import mobius, integer_nthroot
    def A153159(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**5 # Chai Wah Wu, Nov 21 2024

Extensions

Edited and extended by Ray Chandler, Dec 22 2008

A153160 a(n) = A007916(n)^6.

Original entry on oeis.org

64, 729, 15625, 46656, 117649, 1000000, 1771561, 2985984, 4826809, 7529536, 11390625, 24137569, 34012224, 47045881, 64000000, 85766121, 113379904, 148035889, 191102976, 308915776, 481890304, 594823321, 729000000, 887503681
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^6
  • Python
    from sympy import mobius, integer_nthroot
    def A153160(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**6 # Chai Wah Wu, Nov 21 2024

Extensions

Edited and extended by Ray Chandler, Dec 22 2008

A277615 a(1)=1; thereafter, if n = c(x_1)^...^c(x_k) (where c(k) = A007916(k) and with parentheses nested from the right, as in the definition of A277564), a(n) = 1 + a(x_1) + ... + a(x_k).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 4, 6, 6, 7, 8, 5, 7, 7, 8, 5, 9, 5, 6, 8, 8, 9, 5, 6, 10, 6, 5, 7, 9, 9, 10, 6, 7, 11, 7, 6, 8, 10, 10, 6, 11, 7, 8, 12, 8, 7, 9, 11, 11, 7, 12, 8, 9, 13, 5, 9, 8, 10, 12, 12, 8, 13, 9, 10, 14, 6, 10, 9, 11, 13, 13, 5, 9, 14, 10, 11, 15, 7, 11, 10, 12, 14, 14, 6, 10, 15, 11, 12
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2016

Keywords

Comments

A007916 lists the numbers whose prime multiplicities are relatively prime. For each n we can construct a plane tree by repeatedly factoring all positive integers at any level into their corresponding power towers of non-perfect-powers (see A277564). a(n) is the number of nodes in this plane tree.

Examples

			a(1)=1, a(2)=1+a(1)=2, a(3)=1+a(2)=3, a(4)=1+a(1)+a(1)=3 because 4=c(1)^c(1), a(8)=1+a(1)+a(2)=4 because 8=c(1)^c(2), a(9)=1+a(2)+a(1)=4 because 9=c(2)^c(1), a(10)=1+a(6)=5 because 10=c(6).
		

Crossrefs

Programs

  • Mathematica
    nn=10000;
    radicalQ[1]:=False;radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1];
    hyperfactor[1]:={};hyperfactor[n_?radicalQ]:={n};
    hyperfactor[n_]:=With[{g=GCD@@FactorInteger[n][[All,2]]},Prepend[hyperfactor[g],Product[Apply[Power[#1,#2/g]&,r],{r,FactorInteger[n]}]]];
    rad[0]:=1;rad[n_?Positive]:=rad[n]=NestWhile[#+1&,rad[n-1]+1,Not[radicalQ[#]]&];Set@@@Array[radPi[rad[#]]==#&,nn];
    rnk[n_]:=rnk[n]=1+Total[rnk/@radPi/@hyperfactor[n]];
    Array[rnk,nn]

Formula

First appearance of n is a(A277576(n)). Last appearance of n is a(2^^{n-1}) where ^^ denotes iterated exponentiation (or tetration).
Number of appearances of n is the Catalan number |{k:a(k)=n}| = C_{n-1}.

Extensions

Edited by N. J. A. Sloane, Nov 09 2016
Previous Showing 11-20 of 282 results. Next