A076126
Triangle T(n,k) of associated Lah numbers, n>=2, k=1..floor(n/2).
Original entry on oeis.org
2, 6, 24, 12, 120, 120, 720, 1080, 120, 5040, 10080, 2520, 40320, 100800, 40320, 1680, 362880, 1088640, 604800, 60480, 3628800, 12700800, 9072000, 1512000, 30240, 39916800, 159667200, 139708800, 33264000, 1663200, 479001600
Offset: 2
2; 6; 24, 12; 120,120; 720,1080,120; 5040,10080, 2520; ...
A174859
A triangle sequence of polynomial coefficients:p(x,n)=Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}].
Original entry on oeis.org
1, 0, 1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 3, -16, 15, 0, 1, 10, -40, 25, 56, 0, 1, 25, -81, -30, 370, -455, 0, 1, 56, -119, -469, 1841, -1960, -237, 0, 1, 119, -22, -2527, 7448, -5768, -7420, 16947, 0, 1, 246, 766, -10359, 24627, -2289, -76692, 126504, -64220, 0, 1
Offset: 0
{1},
{0, 1},
{0, 1, -1},
{0, 1, 0, -5},
{0, 1, 3, -16, 15},
{0, 1, 10, -40, 25, 56},
{0, 1, 25, -81, -30, 370, -455},
{0, 1, 56, -119, -469, 1841, -1960, -237},
{0, 1, 119, -22, -2527, 7448, -5768, -7420, 16947},
{0, 1, 246, 766, -10359, 24627, -2289, -76692, 126504, -64220},
{0, 1, 501, 4265, -36320, 60215, 119760, -570627, 784245, -248280, -529494}
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 77.
-
Clear[p, x, n];
p[x_, n_] = Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
A281269
Triangle read by rows: T(n,k) is the number of edge covers of the complete labeled graph on n nodes that are minimal and have exactly k edges, n>=2, 1<=k<=n-1.
Original entry on oeis.org
1, 0, 3, 0, 3, 4, 0, 0, 30, 5, 0, 0, 15, 150, 6, 0, 0, 0, 315, 525, 7, 0, 0, 0, 105, 3360, 1568, 8, 0, 0, 0, 0, 3780, 24570, 4284, 9, 0, 0, 0, 0, 945, 69300, 142380, 11070, 10, 0, 0, 0, 0, 0, 51975, 866250, 713790, 27555, 11, 0, 0, 0, 0, 0, 10395, 1455300, 8399160, 3250500, 66792, 12
Offset: 2
1;
0, 3;
0, 3, 4;
0, 0, 30, 5;
0, 0, 15, 150, 6;
0, 0, 0, 315, 525, 7;
0, 0, 0, 105, 3360, 1568, 8;
0, 0, 0, 0, 3780, 24570, 4284, 9;
0, 0, 0, 0, 945, 69300, 142380, 11070, 10;
First positive term in each even row is
A001147.
First positive term in each odd row is
A200142.
-
nn = 12; list = Range[0, nn]! CoefficientList[Series[Exp[z (Exp[x] - x - 1)], {x, 0, nn}], x];Table[Map[Drop[#, 1] &,
Drop[Range[0, nn]! CoefficientList[Series[Exp[u z^2/2!] Sum[(u z)^j/j!*list[[j + 1]], {j, 0, nn}], {z, 0, nn}], {z, u}], 2]][[n, 1 ;; n]], {n, 1, nn - 1}] // Grid
Comments