cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A076126 Triangle T(n,k) of associated Lah numbers, n>=2, k=1..floor(n/2).

Original entry on oeis.org

2, 6, 24, 12, 120, 120, 720, 1080, 120, 5040, 10080, 2520, 40320, 100800, 40320, 1680, 362880, 1088640, 604800, 60480, 3628800, 12700800, 9072000, 1512000, 30240, 39916800, 159667200, 139708800, 33264000, 1663200, 479001600
Offset: 2

Views

Author

Keywords

Comments

Number of partitions of {1,..,n} into k lists of size >1, where a list means an ordered subset, cf. A008297.

Examples

			2; 6; 24, 12; 120,120; 720,1080,120; 5040,10080, 2520; ...
		

Crossrefs

Row sums give A052845, A008306, A008299.

Formula

T(n, k) = n!/k!*binomial(n-k-1, k-1), n>=2, k=1..floor(n/2). G.f.: G.f.: Sum_{n>=2, k=1..floor(n/2)} T(n, k)*x^n*y^k/n! = exp(x^2*y/(1-x))-1.

A174859 A triangle sequence of polynomial coefficients:p(x,n)=Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}].

Original entry on oeis.org

1, 0, 1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 3, -16, 15, 0, 1, 10, -40, 25, 56, 0, 1, 25, -81, -30, 370, -455, 0, 1, 56, -119, -469, 1841, -1960, -237, 0, 1, 119, -22, -2527, 7448, -5768, -7420, 16947, 0, 1, 246, 766, -10359, 24627, -2289, -76692, 126504, -64220, 0, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 31 2010

Keywords

Comments

Row sums are:
{1, 1, 0, -4, 3, 52, -170, -887, 8778, -1416, -415734,...}.

Examples

			{1},
{0, 1},
{0, 1, -1},
{0, 1, 0, -5},
{0, 1, 3, -16, 15},
{0, 1, 10, -40, 25, 56},
{0, 1, 25, -81, -30, 370, -455},
{0, 1, 56, -119, -469, 1841, -1960, -237},
{0, 1, 119, -22, -2527, 7448, -5768, -7420, 16947},
{0, 1, 246, 766, -10359, 24627, -2289, -76692, 126504, -64220},
{0, 1, 501, 4265, -36320, 60215, 119760, -570627, 784245, -248280, -529494}
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 77.

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n];
    p[x_, n_] = Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}];
    Table[CoefficientList[p[x, n], x], {n, 0, 10}];
    Flatten[%]

Formula

p(x,n)=Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}];
t(n,m)=coefficients(p(x,n))

A281269 Triangle read by rows: T(n,k) is the number of edge covers of the complete labeled graph on n nodes that are minimal and have exactly k edges, n>=2, 1<=k<=n-1.

Original entry on oeis.org

1, 0, 3, 0, 3, 4, 0, 0, 30, 5, 0, 0, 15, 150, 6, 0, 0, 0, 315, 525, 7, 0, 0, 0, 105, 3360, 1568, 8, 0, 0, 0, 0, 3780, 24570, 4284, 9, 0, 0, 0, 0, 945, 69300, 142380, 11070, 10, 0, 0, 0, 0, 0, 51975, 866250, 713790, 27555, 11, 0, 0, 0, 0, 0, 10395, 1455300, 8399160, 3250500, 66792, 12
Offset: 2

Views

Author

Geoffrey Critzer, Apr 25 2017

Keywords

Comments

A minimal edge cover is an edge cover such that the removal of any edge in the cover destroys the covering property.

Examples

			1;
0, 3;
0, 3,  4;
0, 0, 30,   5;
0, 0, 15, 150,    6;
0, 0,  0, 315,  525,     7;
0, 0,  0, 105, 3360,  1568,      8;
0, 0,  0,   0, 3780, 24570,   4284,     9;
0, 0,  0,   0,  945, 69300, 142380, 11070, 10;
		

Crossrefs

Row sums give A053530.
First positive term in each even row is A001147.
First positive term in each odd row is A200142.

Programs

  • Mathematica
    nn = 12; list = Range[0, nn]! CoefficientList[Series[Exp[z (Exp[x] - x - 1)], {x, 0, nn}], x];Table[Map[Drop[#, 1] &,
        Drop[Range[0, nn]! CoefficientList[Series[Exp[u z^2/2!] Sum[(u z)^j/j!*list[[j + 1]], {j, 0, nn}], {z, 0, nn}], {z, u}], 2]][[n, 1 ;; n]], {n, 1, nn - 1}] // Grid

Formula

E.g.f.: exp(y*x^2/2) * Sum_{j>=0} (y*x)^j/j! * Sum_{k=0..floor(j/2)} A008299(j,k)*x^k.
Previous Showing 31-33 of 33 results.