cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 83 results. Next

A283823 Erroneous version of A000676.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 12, 27, 55, 128, 285
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2017

Keywords

Comments

Included in accordance with OEIS policy of including erroneous but published sequences to serve as pointers to the correct versions.

A283827 Irregular triangle read by rows: T(n,k) = number of trees on n nodes with load k, n>=1, 1 <= k <= floor(n/2).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 3, 7, 1, 3, 9, 10, 1, 4, 12, 30, 1, 4, 18, 38, 45, 1, 5, 21, 64, 144, 1, 5, 27, 91, 217, 210
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2017

Keywords

Comments

The load of a tree is the maximal branch weight from the centroid.

Examples

			Triangle begins:
  0,
  1,
  1,
  1, 1,
  1, 2,
  1, 2,  3,
  1, 3,  7,
  1, 3,  9, 10,
  1, 4, 12, 30,
  1, 4, 18, 38,  45,
  1, 5, 21, 64, 144,
  1, 5, 27, 91, 217, 210,
  ...
		

Crossrefs

A328057 Number of graphs with n nodes having fewer than n edges.

Original entry on oeis.org

1, 2, 3, 7, 14, 33, 81, 215, 601, 1808, 5721, 19133, 67218, 247377, 950679, 3806360, 15837196, 68336348, 305196782, 1408294018, 6703197359, 32861879994, 165699114887, 858237346563, 4560774579700, 24839216194151, 138505159164086, 789982051646096, 4604866422703625
Offset: 1

Views

Author

Sigurd Kittilsen and Lars Tveito, Oct 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    a[n_] := a[n] = Module[{s = O[x]^n}, Do[s += permcount[p]*edges[p, 1 + x^# + O[x]^n &], {p, IntegerPartitions[n]}]; SeriesCoefficient[s/(1-x), {x, 0, n - 1}]/n!];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    a(n)={my(s=O(x^n)); forpart(p=n, s+=permcount(p)*edges(p, i->1 + x^i + O(x^n))); polcoef(s/(1-x), n-1)/n!} \\ Andrew Howroyd, Oct 22 2019

Extensions

Terms a(17) and beyond from Andrew Howroyd, Oct 22 2019

A005143 Number of sub-Eulerian graphs with n nodes.

Original entry on oeis.org

1, 1, 3, 10, 45, 274
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A005144 Number of sub-Hamiltonian graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 10, 43, 346
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A120412 Number of unlabeled graphs with n equal to the number of vertices plus the number of edges.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 7, 10, 16, 25, 40, 66, 111, 191, 343, 627, 1182, 2301, 4609, 9511, 20229, 44252, 99564, 230171, 546118, 1328476, 3309876, 8436887, 21980376, 58473130, 158692559, 439012704, 1237049733, 3547984011, 10350963267, 30699209481, 92508993842
Offset: 1

Views

Author

Petr Vojtechovsky (petr(AT)math.du.edu), Jul 05 2006

Keywords

Comments

Given two integers p, q, one can count the different graphs having p vertices and q edges by the standard Polya counting technique. Our sequence is then obtained by summing up the terms with p + q = n.

Examples

			a(3) = 2 because there is a graph with 3 vertices and no edges and a graph with 2 vertices and one edge.
		

Crossrefs

Cf. A008406.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^g, {j, 1, i - 1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    row[n_] := row[n] = Module[{s = 0}, Do[s += permcount[p]*edges[p, 1+x^#&], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x]&;
    T[n_, k_] := If[k <= Length[row[n]], row[n][[k]], 0];
    a[n_] := Sum[T[k, n-k+1], {k, 1, n}];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 37}] (* Jean-François Alcover, Jan 09 2021, after Andrew Howroyd in A008406 *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
    seq(n)={Vec(sum(k=1, n, x^k*G(k, x + O(x*x^(n-k)))))} \\ Andrew Howroyd, Nov 07 2019

Formula

a(n) = Sum_{i=1..n} A008406(i, n-i). - Andrew Howroyd, Nov 07 2019

Extensions

Terms a(14) and beyond from Andrew Howroyd, Nov 07 2019

A171534 Triangle read by rows: T(n,k)=binomial(2*n*k+k,2)/(2*n+1).

Original entry on oeis.org

1, 2, 9, 3, 13, 30, 4, 17, 39, 70, 5, 21, 48, 86, 135, 6, 25, 57, 102, 160, 231, 7, 29, 66, 118, 185, 267, 364, 8, 33, 75, 134, 210, 303, 413, 540, 9, 37, 84, 150, 235, 339, 462, 604, 765, 10, 41, 93, 166, 260, 375, 511, 668, 846, 104
Offset: 1

Views

Author

Roger L. Bagula, Dec 11 2009

Keywords

Comments

Row sums are: 1, 11, 46, 130, 295, 581, 1036, 1716, 2685, 4015,... see A006324

Examples

			1;
2, 9;
3, 13, 30;
4, 17, 39, 70;
5, 21, 48, 86, 135;
6, 25, 57, 102, 160, 231;
7, 29, 66, 118, 185, 267, 364;
8, 33, 75, 134, 210, 303, 413, 540;
9, 37, 84, 150, 235, 339, 462, 604, 765;
10, 41, 93, 166, 260, 375, 511, 668, 846, 1045;
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 145.

Crossrefs

Programs

  • Mathematica
    Table[Table[Binomial[2*n*k + k, 2]/(2*n + 1), {k, 1, n}], {n, 1, 10}]
    Flatten[%]

Formula

T(n,k)=binomial(2*n*k + k, 2)/(2*n + 1).

Extensions

Introduced OEIS notational standards and keyword:tabl - The Assoc. Editors of the OEIS, Dec 15 2009

A182043 Table, by rows, of T(k,n) the number of simple graphs on v = prime(n) vertices and with e = prime(k) edges.

Original entry on oeis.org

1, 1, 2, 4, 6, 4, 2, 5, 21, 65, 148, 97, 10, 2, 2, 5, 26, 172, 10250, 75415, 2295898, 8640134, 53037356, 99187806, 70065437, 4609179, 192788, 28259, 467, 2, 2, 5, 26, 176, 14140, 154658, 17422984, 152339952, 6461056816, 359954668522, 899632282299, 4093273437761, 4093273437761
Offset: 2

Views

Author

Jonathan Vos Post, Apr 07 2012

Keywords

Examples

			T(3,4) = 4 because there are 4 simple graphs with prime(3) = 5 vertices and prime(4) = 7 edges.
The table begins:
      +---+---+---+---+
      |e=2|e=3|e=5|e=7|
  +---+---+---+---+---+
  |v=3| 1 | 1 |   |   |
  +---+---+---+---+---+
  |v=5| 2 | 4 | 6 | 4 |
  +---+---+---+---+---+
		

Crossrefs

Cf. A008406.

Programs

  • Maple
    read("transforms3") :
    L := BFILETOLIST("b008406.txt") ;
    A008406 := proc(n,k)
        global L ;
        local f,r ;
        f := 1 ;
        r := 1 ;
        while r < n do
            f := f+r*(r-1)/2+1 ;
            r := r+1 ;
        end do:
        op(f+k,L) ;
    end proc:
    for n from 1 do
        v := ithprime(n) ;
        for k from 1 do
            e := ithprime(k) ;
            if e > v*(v-1)/2 then
                break;
            else
                printf("%d,",A008406(v,e)) ;
            end if;
        end do:
    end do: # R. J. Mathar, Oct 20 2013

Extensions

Terms from row 4 on by R. J. Mathar, Oct 20 2013

A283822 Triangle read by rows: T(n,k) (n>=1, 2<=k<=n+1) = number of graphs with n edges, no isolated nodes, and k nodes in largest connected component.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 7, 8, 6, 1, 6, 15, 16, 19, 11, 1, 7, 24, 34, 44, 44, 23, 1, 9, 38, 71, 97, 122, 112, 47, 1, 11, 61, 133, 211, 295, 371, 287, 106, 1, 13, 90, 249, 457, 659, 1015, 1131, 763, 235
Offset: 1

Views

Author

N. J. A. Sloane, Mar 18 2017

Keywords

Examples

			Triangle begins:
1,
1,1,
1,2,2,
1,3,4,3,
1,4,7,8,6,
1,6,15,16,19,11,
1,7,24,34,44,44,23,
1,9,38,71,97,122,112,47,
1,11,61,133,211,295,371,287,106,
1,13,90,249,457,659,1015,1131,763,235,
...
		

Crossrefs

Row sums are A000664.

A283824 Number of unlabeled (and unrooted) trees on n nodes having a node that is both a center and a centroid.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 2, 6, 7, 20, 27, 83, 126
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2017

Keywords

Comments

In view of the errors in the second line of the table (compare A000676 and A283823), the entries a(11)=83 and a(12)=126 should be checked carefully.

Crossrefs

Previous Showing 71-80 of 83 results. Next