cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A008429 Theta series of D_7 lattice.

Original entry on oeis.org

1, 84, 574, 1288, 3444, 4424, 9240, 11088, 18494, 19740, 34440, 31304, 52808, 52248, 74048, 71120, 110964, 94864, 145222, 132888, 181384, 163856, 249480, 201040, 295960, 264684, 346696, 314272, 454608, 352520, 518336, 452256, 591934, 517216
Offset: 0

Views

Author

Keywords

Examples

			1 + 84*q^2 + 574*q^4 + 1288*q^6 + 3444*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.

Crossrefs

A008451(2n) = a(n).

Programs

  • Mathematica
    terms = 34; s = 1/2 (EllipticTheta[3, 0, q]^7 + EllipticTheta[4, 0, q]^7) + O[q]^(2 terms); CoefficientList[s, q^2] (* Jean-François Alcover, Jul 07 2017 *)
  • PARI
    {a(n)=if(n<0, 0, n*=2; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^7, n))} /* Michael Somos, Nov 03 2006 */

Formula

G.f.: (theta_3(q^(1/2))^7 + theta_4(q^(1/2))^7)/2.

A133102 Number of partitions of n^3 into n distinct nonzero squares.

Original entry on oeis.org

1, 0, 0, 0, 0, 3, 5, 20, 56, 112, 268, 618, 1922, 8531, 29021, 100407, 321531, 899618, 2937312, 9295401, 31615059, 117365818, 403433963, 1417579281, 4848439367, 15960316056, 55180971700, 190251417034, 670818005444, 2429973932322
Offset: 1

Views

Author

Hugo Pfoertner, Sep 12 2007

Keywords

Examples

			a(6) = 3 because there are 3 ways to express 6^3 = 216 as a sum of 6 distinct nonzero squares: 216 = 1^2 + 2^2 + 4^2 + 5^2 + 7^2 + 11^2 = 1^2 + 3^2 + 5^2 + 6^2 + 8^2 + 9^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 9^2.
		

Crossrefs

Cf. A133103 (number of ways to express n^3 as a sum of n nonzero squares), A133105 (number of ways to express n^4 as a sum of n distinct nonzero squares).

Programs

  • PARI
    a(i, n, k)=local(s, j); if(k==1, if(issquare(n) && n
    				

Extensions

2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007
More terms from Robert Gerbicz, May 09 2008

A133103 Number of partitions of n^3 into n nonzero squares.

Original entry on oeis.org

1, 1, 2, 1, 10, 34, 156, 734, 3599, 18956, 99893, 548373, 3078558, 17510598, 101960454, 599522778, 3565904170, 21438347021, 129905092421, 794292345434, 4890875249113, 30326545789640, 189195772457341, 1187032920371427
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2007

Keywords

Examples

			a(2)=1 because the only way to express 2^3 = 8 as a sum of two squares is 8 = 2^2 + 2^2.
a(3)=2 because 3^3 = 27 = 1^2 + 1^2 + 5^2 = 3^2 + 3^2 + 3^2.
		

Crossrefs

Cf. A133102 (number of ways to express n^3 as a sum of n distinct nonzero squares), A133104 (number of ways to express n^4 as a sum of n nonzero squares).

Programs

  • PARI
    a(i, n, k)=local(s, j); if(k==1, if(issquare(n), return(1), return(0)), s=0; for(j=ceil(sqrt(n/k)), min(i, floor(sqrt(n-k+1))), s+=a(j, n-j^2, k-1)); return(s)) for(n=1,50, m=n^3; k=n; print1(a(m, m, k)", ") ) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007

Extensions

2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007
More terms from Robert Gerbicz, May 09 2008

A133105 Number of partitions of n^4 into n distinct nonzero squares.

Original entry on oeis.org

1, 0, 1, 0, 21, 266, 2843, 55932, 884756, 13816633, 283194588, 5375499165, 125889124371, 3202887665805, 80542392920980, 2270543992935431, 64253268814048352, 1892633465941308859, 59116753827795287519, 1886846993941912938452
Offset: 1

Views

Author

Hugo Pfoertner, Sep 12 2007

Keywords

Examples

			a(3)=1 because there is exactly one way to express 3^4 as the sum of 3 distinct nonzero squares: 81 = 1^2 + 4^2 + 8^2.
		

Crossrefs

Cf. A133104 (number of ways to express n^4 as a sum of n nonzero squares), A133102 (number of ways to express n^3 as a sum of n distinct nonzero squares).

Programs

  • PARI
    a(i, n, k)=local(s, j); if(k==1, if(issquare(n) && n
    				

Extensions

a(10) from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007
a(11) onwards from Robert Gerbicz, May 09 2008

A004408 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-7).

Original entry on oeis.org

1, -14, 112, -672, 3346, -14560, 57120, -206208, 694960, -2209774, 6683040, -19345760, 53874912, -144936288, 377965760, -958231680, 2367566866, -5713057728, 13488657168, -31210552800, 70873262880, -158145658560
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
  • PARI
    q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^7) \\ Altug Alkan, Sep 20 2018

Formula

a(n) ~ (-1)^n * 49*exp(Pi*sqrt(7*n)) / (4096*n^(5/2)). - Vaclav Kotesovec, Aug 18 2015
From Ilya Gutkovskiy, Sep 20 2018: (Start)
G.f.: 1/theta_3(x)^7, where theta_3() is the Jacobi theta function.
G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^7. (End)

A133104 Number of partitions of n^4 into n nonzero squares.

Original entry on oeis.org

1, 0, 3, 1, 49, 732, 9659, 190169, 3225654, 61896383, 1360483727, 30969769918, 778612992660, 20749789703573, 579672756740101, 17115189938667708, 525530773660159970, 16825686497823918869, 561044904645283065043, 19368002907483932784642
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2007

Keywords

Examples

			a(3)=3 because there are 3 ways to express 3^4 = 81 as a sum of 3 nonzero squares: 81 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2.
a(4)=1 because the only way to express 4^4 = 256 as a sum of 4 nonzero squares is 256 = 8^2 + 8^2 + 8^2 + 8^2.
		

Crossrefs

Cf. A133105 (number of ways to express n^4 as a sum of n distinct nonzero squares), A133103 (number of ways to express n^3 as a sum of n nonzero squares).

Programs

  • PARI
    a(i, n, k)=local(s, j); if(k==1, if(issquare(n), return(1), return(0)), s=0; for(j=ceil(sqrt(n/k)), min(i, floor(sqrt(n-k+1))), s+=a(j, n-j^2, k-1)); return(s)) for(n=1,50, m=n^4; k=n; print1(a(m, m, k)", ") ) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007

Extensions

a(9) from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007
a(10) onwards from Robert Gerbicz, May 09 2008

A361695 Number of ways of writing n^2 as a sum of seven squares.

Original entry on oeis.org

1, 14, 574, 3542, 18494, 43414, 145222, 235998, 591934, 860846, 1779974, 2256422, 4678982, 5195750, 9675918, 10983742, 18942014, 19873966, 35294686, 34670454, 57349894, 59707494, 92513302, 90116222, 149759302, 135668414, 213025750, 209185718, 311753358, 287144326, 450333422
Offset: 0

Views

Author

Alois P. Heinz, Mar 22 2023

Keywords

Crossrefs

Column k=7 of A302996.

Programs

  • Maple
    a:= n-> coeff((sum(x^(j^2), j=-n..n))^7, x, n^2):
    seq(a(n), n=0..30);
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
          b(n, t-1) +2*add(b(n-j^2, t-1), j=1..isqrt(n))))
        end:
    a:= n-> b(n^2, 7):
    seq(a(n), n=0..30);
  • Mathematica
    SquaresR[7, Range[0, 30]^2] (* Paolo Xausa, Aug 21 2025 *)

Formula

a(n) = [x^(n^2)] (Sum_{j=-n..n} x^(j^2))^7.
a(n) = A008451(n^2).
a(n) = A302996(n,7).
Previous Showing 11-17 of 17 results.