cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A351529 The number of quaternary strings of length n containing 00.

Original entry on oeis.org

0, 0, 1, 7, 40, 205, 991, 4612, 20905, 92935, 407056, 1762117, 7556095, 32148940, 135892321, 571232647, 2389810360, 9956870845, 41335010911, 171055514452, 705891052825, 2905717608775, 11934337612576, 48918212175157, 200149835407615, 817572886925980
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2022

Keywords

Crossrefs

Cf. A008466 (2-ary), A186244 (3-ary), A351530 (5-ary), A125145 (not containing 00).

Programs

  • Mathematica
    LinearRecurrence[{7,-9,-12},{0,0,1},30] (* Harvey P. Dale, Feb 27 2023 *)

Formula

G.f.: x^2 / ( (4*x-1)*(3*x^2+3*x-1) ).
a(n) = 4^n - A125145(n).

A353501 Number of integer partitions of n with all parts and all multiplicities > 2.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 2, 3, 0, 0, 6, 2, 0, 6, 3, 2, 9, 2, 5, 11, 3, 5, 18, 6, 4, 20, 13, 8, 26, 10, 17, 37, 14, 16, 51, 23, 24, 58, 38, 32, 75, 44, 52, 100, 52, 59, 143, 75, 77, 159, 114, 112, 203, 132, 154, 266, 175
Offset: 0

Views

Author

Gus Wiseman, May 16 2022

Keywords

Examples

			The a(n) partitions for selected n (A = 10):
  n=9:   n=12:   n=21:      n=24:       n=30:
------------------------------------------------------
  (333)  (444)   (777)      (888)       (AAA)
         (3333)  (444333)   (6666)      (66666)
                 (3333333)  (444444)    (555555)
                            (555333)    (666444)
                            (4443333)   (777333)
                            (33333333)  (6663333)
                                        (55533333)
                                        (444333333)
                                        (3333333333)
		

Crossrefs

The version for only parts > 2 is A008483.
The version for only multiplicities > 2 is A100405.
The version for parts and multiplicities > 1 is A339222, ranked by A062739.
For prime parts and multiplicities we have A351982, compositions A353429.
The version for compositions is A353428 (partial A078012, A353400).
These partitions are ranked by A353502.
A000726 counts partitions with all mults <= 2, compositions A128695.
A004250 counts partitions with some part > 2, compositions A008466.
A137200 counts compositions with all parts and run-lengths <= 2.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min@@#>2&&Min@@Length/@Split[#]>2&]],{n,0,30}]

A354235 Heinz numbers of integer partitions with at least one part divisible by 3.

Original entry on oeis.org

5, 10, 13, 15, 20, 23, 25, 26, 30, 35, 37, 39, 40, 45, 46, 47, 50, 52, 55, 60, 61, 65, 69, 70, 73, 74, 75, 78, 80, 85, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 110, 111, 113, 115, 117, 120, 122, 125, 130, 135, 137, 138, 140, 141, 143, 145, 146, 148, 150
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    5: {3}
   10: {1,3}
   13: {6}
   15: {2,3}
   20: {1,1,3}
   23: {9}
   25: {3,3}
   26: {1,6}
   30: {1,2,3}
   35: {3,4}
   37: {12}
   39: {2,6}
   40: {1,1,1,3}
   45: {2,2,3}
   46: {1,9}
   47: {15}
   50: {1,3,3}
   52: {1,1,6}
   55: {3,5}
   60: {1,1,2,3}
		

Crossrefs

For 4 instead of 3 we have A046101, counted by A295342.
This sequence ranks the partitions counted by A295341, compositions A335464.
For 2 instead of 3 we have A324929 (and A013929), counted by A047967.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A004709 lists numbers divisible by no cube, counted by A000726.
A036966 lists 3-full numbers, counted by A100405.
A046099 lists non-cubefree numbers.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A354234 counts partitions of n with at least one part divisible by k.

Programs

  • Mathematica
    Select[Range[100],MemberQ[PrimePi/@First/@If[#==1,{},FactorInteger[#]]/3,_?IntegerQ]&]

A119587 2^n + 1 - 2*Fibonacci(n+1).

Original entry on oeis.org

0, 1, 1, 3, 7, 17, 39, 87, 189, 403, 847, 1761, 3631, 7439, 15165, 30795, 62343, 125905, 253783, 510759, 1026685, 2061731, 4136991, 8295873, 16627167, 33311647, 66716029, 133582107, 267406999, 535206833, 1071049287
Offset: 0

Views

Author

Ross La Haye, May 31 2006, Jun 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n + 1 - 2 Fibonacci[n + 1], {n, 0, 30}]

Formula

a(n) = 2^n + 1 - 2*Fibonacci(n+1) = 2^n + 1 + Fibonacci(n) - Fibonacci(n+3) = 2^n + 1 - Fibonacci(n) - Lucas(n). a(n) = 2(2^(n-1) - Fibonacci(n+1)) + 1, for n > 0. a(n) = A000051(n) - A006355(n+2) = A000051(n) - A000045(n) - A000032(n). a(n) = A101220(2,2,n-1) - A101220(1,1,n-3), for n > 2. a(n) = A008466(n) - A000071(n-1), for n > 0. a(n) = 2*A008466(n-1) + 1, for n > 0.
a(n) = 2*A101220(2,2,n-2) + 1, for n > 1. a(n) = Sum[2^(n-k)Fibonacci(k) - Fibonacci(k-2),{k,0,n}] = antidiagonal sums of A118654. a(n+1) - a(n) = 2(2^(n-1) - Fibonacci(n)), for n > 0. a(n+1) - a(n) = 2*A027934(n-2), for n > 1. a(n+1) - a(n) = 2*A101220(1,2,n-1), for n > 0. a(0) = 0; a(1) = 1; a(n) = a(n-1) + a(n-2) + 2^(n-2) - 1, for n > 1. a(0) = 0; a(1) = 1; a(2) = 1; a(3) = 3; a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4), for n > 3.
O.g.f. = x(1-3x+3x^2)/((1-x)(1-2x)(1-x-x^2)).

A153281 Triangle read by rows, A130321 * A127647. Also, number of subsets of [n+2] with consecutive integers that start at k.

Original entry on oeis.org

1, 2, 1, 4, 2, 2, 8, 4, 4, 3, 16, 8, 8, 6, 5, 32, 16, 16, 12, 10, 8, 64, 32, 32, 24, 20, 16, 13, 128, 64, 64, 48, 40, 32, 26, 21, 256, 128, 128, 96, 80, 64, 52, 42, 34, 512, 256, 256, 192, 160, 128, 104, 84, 68, 55
Offset: 0

Views

Author

Gary W. Adamson, Dec 23 2008

Keywords

Comments

Row sums = A008466(k-2): (1, 3, 8, 19, 43, 94, ...).
T(n,k) is the number of subsets of {1,...,n+2} that contain consecutive integers and that have k as the first integer in the first consecutive string. (See the example below.) Hence rows sums of T(n,k) give the number of subsets of {1,...,n+2} that contain consecutive integers. Also, T(n,k) = F(k)*2^(n+1-k), where F(k) is the k-th Fibonacci number, since there are F(k) subsets of {1,...,k-2} that contain no consecutive integers and there are 2^(n+1-k) subsets of {k+2,...,n+2}. [Dennis P. Walsh, Dec 21 2011]

Examples

			First few rows of the triangle:
    1;
    2,   1;
    4,   2,   2;
    8,   4,   4,   3;
   16,   8,   8,   6,   5;
   32,  16,  16,  12,  10,   8;
   64,  32,  32,  24,  20,  16,  13;
  128,  64,  64,  48,  40,  32,  26,  21;
  256, 128, 128,  96,  80,  64,  52,  42,  34;
  512, 256, 256, 192, 160, 128, 104,  84,  68,  55;
  ...
Row 4 = (16, 8, 8, 6, 5) = termwise products of (16, 8, 4, 2, 1) and (1, 1, 2, 3, 5).
For n=5 and k=3, T(5,3)=16 since there are 16 subsets of {1,2,3,4,5,6,7} containing consecutive integers with 3 as the first integer in the first consecutive string, namely,
  {1,3,4}, {1,3,4,5}, {1,3,4,6}, {1,3,4,7}, {1,3,4,5,6}, {1,3,4,5,7}, {1,3,4,6,7}, {1,3,4,5,6,7}, {3,4}, {3,4,5}, {3,4,6}, {3,4,7}, {3,4,5,6}, {3,4,5,7}, {3,4,6,7}, and {3,4,5,6,7}. [_Dennis P. Walsh_, Dec 21 2011]
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):
    seq(seq(2^(n+1-k)*fibonacci(k),k=1..(n+1)),n=0..10);
  • Mathematica
    Table[2^(n+1-k) Fibonacci[k],{n,0,10},{k,n+1}]//Flatten (* Harvey P. Dale, Apr 26 2020 *)

Formula

Triangle read by rows, A130321 * A127647. A130321 = an infinite lower triangular matrix with powers of 2: (A000079) in every column: (1, 2, 4, 8, ...).
A127647 = an infinite lower triangular matrix with the Fibonacci numbers, A000045 as the main diagonal and the rest zeros.
T(n,k)=2^(n+1-k)*F(k) where F(k) is the k-th Fibonacci number. [Dennis Walsh, Dec 21 2011]

A167826 a(n) is the number of n-tosses having a run of 3 or more heads and a run of 3 or more tails for a fair coin.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 8, 26, 74, 194, 482, 1152, 2674, 6068, 13524, 29704, 64460, 138482, 294988, 623834, 1311086, 2740666, 5702270, 11815752, 24395678, 50209572, 103048168, 210965064, 430938832, 878534170
Offset: 1

Views

Author

V.J. Pohjola, Nov 13 2009

Keywords

Crossrefs

Programs

  • Mathematica
    b[1] = 0; b[2] = 1; b[3] = 1; b[n_]: = b[n-1] + b[n-2] + b[n-3]; Table[2^n - 2*(Sum[b[n + 3 - i], {i, 1, 3}] - Fibonacci[n + 1]), {n, 1, 30}]
    LinearRecurrence[{4, -3, -3, 0, 3, 2}, {0, 0, 0, 0, 0, 2}, 50] (* G. C. Greubel, Jun 27 2016 *)

Formula

a(n) = 2^n - 2*(tribonacci(n+3) - Fibonacci(n+1)), where tribonacci = A000073.
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) - 3*a(n-3) + 3*a(n-5) + 2*a(n-6).
G.f.: -2*x^6/((2*x-1)*(x^2+x-1)*(x^3+x^2+x-1)). (End)

A272099 Triangle read by rows, T(n,k) = C(n+1,k+1)*F([k-n, k-n-1], [-n-1], -1), where F is the generalized hypergeometric function, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 4, 1, 12, 5, 1, 32, 18, 6, 1, 80, 56, 25, 7, 1, 192, 160, 88, 33, 8, 1, 448, 432, 280, 129, 42, 9, 1, 1024, 1120, 832, 450, 180, 52, 10, 1, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 5120, 6912, 6400, 4424, 2364, 985, 316, 75, 12, 1
Offset: 0

Views

Author

Peter Luschny, Apr 25 2016

Keywords

Comments

This triangle results when the first column is removed from A210038. - Georg Fischer, Jul 26 2023

Examples

			Triangle starts:
1;
4,    1;
12,   5,    1;
32,   18,   6,   1;
80,   56,   25,  7,   1;
192,  160,  88,  33,  8,   1;
448,  432,  280, 129, 42,  9,  1;
1024, 1120, 832, 450, 180, 52, 10, 1;
		

Crossrefs

A258109 (row sums), A008466 (alternating row sums), A001787 (col. 0), A001793 (col. 1), A055585 (col. 2).
Cf. A210038.

Programs

  • Maple
    T := (n,k) -> binomial(n+1,k+1)*hypergeom([k-n, k-n-1], [-n-1], -1):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n+1, k+1] HypergeometricPFQ[{k-n, k-n-1}, {-n-1}, -1];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 22 2019 *)
Previous Showing 31-37 of 37 results.