cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 416 results. Next

A076383 Numbers n such that sum of digits in base 5 is a divisor of sum of prime divisors (A008472).

Original entry on oeis.org

2, 3, 5, 21, 25, 27, 30, 35, 42, 78, 105, 110, 115, 123, 125, 126, 130, 132, 141, 150, 153, 155, 159, 161, 170, 175, 186, 187, 195, 201, 228, 230, 231, 252, 258, 260, 264, 276, 290, 301, 327, 329, 340, 357, 372, 378, 381, 395, 396, 402, 410, 411, 429, 434
Offset: 1

Views

Author

Floor van Lamoen, Oct 08 2002

Keywords

Crossrefs

Programs

  • Maple
    A076383 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 5); t1 := floor(t1/5); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;

A076384 Numbers n such that sum of digits in base 6 is a divisor of sum of prime divisors (A008472).

Original entry on oeis.org

2, 3, 5, 6, 25, 30, 36, 38, 39, 42, 60, 78, 84, 90, 106, 114, 120, 122, 126, 130, 150, 152, 156, 171, 178, 180, 183, 186, 187, 194, 198, 216, 217, 218, 219, 221, 222, 228, 230, 240, 244, 252, 255, 258, 259, 260, 262, 264, 270, 287, 294, 297, 299, 300, 303, 321
Offset: 1

Views

Author

Floor van Lamoen, Oct 08 2002

Keywords

Crossrefs

Programs

  • Maple
    A076384 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 6); t1 := floor(t1/6); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;
  • Mathematica
    Select[Range[2,350],Divisible[Total[Transpose[FactorInteger[#]][[1]]], Total[ IntegerDigits[#,6]]]&] (* Harvey P. Dale, May 26 2013 *)

A076385 Numbers n such that sum of digits in base 7 is a divisor of sum of prime divisors (A008472).

Original entry on oeis.org

2, 3, 5, 7, 8, 9, 42, 49, 78, 84, 105, 114, 115, 126, 130, 154, 156, 161, 168, 170, 186, 228, 235, 252, 258, 294, 305, 336, 343, 350, 357, 366, 371, 372, 378, 402, 410, 425, 429, 430, 434, 442, 444, 455, 456, 460, 474, 504, 516, 520, 555, 558, 574, 588, 616
Offset: 1

Views

Author

Floor van Lamoen, Oct 08 2002

Keywords

Crossrefs

Programs

  • Maple
    A076385 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 7); t1 := floor(t1/7); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;

A076386 Numbers n such that sum of digits in base 8 is a divisor of sum of prime divisors (A008472).

Original entry on oeis.org

2, 3, 5, 7, 8, 12, 15, 16, 26, 49, 64, 65, 70, 86, 96, 102, 123, 128, 130, 140, 150, 156, 201, 208, 209, 215, 225, 247, 258, 266, 280, 286, 299, 305, 326, 350, 356, 360, 403, 424, 456, 471, 474, 490, 495, 512, 513, 515, 519, 520, 530, 532, 545, 551, 555, 558
Offset: 1

Views

Author

Floor van Lamoen, Oct 08 2002

Keywords

Crossrefs

Programs

  • Maple
    A076386 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 8); t1 := floor(t1/8); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;

A082881 Least value of A075860(j) when j runs through composite numbers between n-th and (n+1)-th primes. That is, the smallest fixed-point[=prime] reached by iteration of function A008472(=sum of prime factors) initiated with composite values between two consecutive primes.

Original entry on oeis.org

0, 2, 5, 2, 5, 2, 5, 7, 2, 7, 2, 2, 5, 2, 2, 2, 7, 2, 2, 5, 2, 3, 2, 5, 3, 13, 2, 5, 3, 2, 2, 2, 3, 2, 7, 5, 3, 13, 2, 3, 7, 2, 5, 3, 2, 2, 2, 2, 5, 7, 2, 7, 2, 2, 2, 2, 7, 2, 3, 2, 2, 2, 2, 5, 2, 2, 5, 2, 19, 2, 2, 2, 5, 2, 2, 3, 2, 3, 2, 2, 17, 2, 5, 5, 2, 2, 2, 7, 23, 2, 2, 3, 3, 3, 5, 2, 2, 19, 2, 5, 2, 3, 2
Offset: 1

Views

Author

Labos Elemer, Apr 16 2003

Keywords

Examples

			Between p(23)=83 and p(24)=89, the relevant fixed points are {5,13,2,2,13}, of which the smallest is 2=a(24).
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; sopf[x_] := Apply[Plus, ba[x]]; Table[Min[Table[FixedPoint[sopf, w], {w, 1+Prime[n], Prime[n+1]-1}]], {n, 2, 103}]

Formula

a(n) = Min_{x=1+prime(n)..prime(n+1)-1} A075860(x).

A082882 Number of distinct values of A075860(j) when j runs through composite numbers between n-th and (n+1)-th primes. That is, the counts of different fixed-points[=prime] reached by iteration of function A008472(=sum of prime factors) initiated with composite values between two consecutive primes.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 2, 3, 1, 4, 2, 1, 3, 3, 5, 1, 4, 3, 1, 3, 3, 3, 3, 2, 1, 1, 1, 3, 8, 3, 2, 1, 6, 1, 2, 3, 3, 3, 5, 1, 5, 1, 2, 1, 7, 4, 2, 1, 2, 4, 1, 5, 3, 4, 4, 1, 5, 3, 1, 6, 6, 2, 1, 2, 7, 3, 4, 1, 3, 4, 6, 3, 3, 3, 4, 6, 3, 5, 5, 1, 6, 1, 3, 3, 4, 5, 1, 1, 2, 6, 4, 3, 4, 3, 2, 6, 1, 8, 3, 6, 4, 5, 1, 4
Offset: 1

Views

Author

Labos Elemer, Apr 16 2003

Keywords

Comments

This count is smaller than A001223[n]-1 and albeit not frequently but it can be one even if primes of borders are not twin primes. Such primes are collected into A082883.

Examples

			Between p(23)=83 and p(24)=89, the relevant fixed points are
{5,13,2,2,13}, i.e., four are distinct from the 5 values, a(24)=4;
between p(2033)=17707 and p(2034)=170713, the fixed-point set is {5,5,5,5,5}, so a(2033)=1, so a(88)=1.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sopf[x_] := Apply[Plus, ba[x]] Table[Length[Union[Table[FixedPoint[sopf, w], {w, 1+Prime[n], Prime[n+1]-1}]]], {n, 1, 1000}]

Formula

a(n) = Card(Union(A075860(x)); x=1+p(n), ..., -1+p(n+1)).

A139316 An integer k, k>=2, is in the sequence if A001222(k) (the sum of the exponents in the prime factorization of k) divides A008472(k) (the sum of the distinct primes dividing k).

Original entry on oeis.org

2, 3, 4, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 28, 29, 31, 33, 35, 37, 39, 41, 42, 43, 47, 48, 51, 52, 53, 55, 57, 59, 61, 65, 67, 69, 71, 72, 73, 76, 77, 78, 79, 83, 84, 85, 87, 89, 91, 93, 95, 97, 98, 101, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 119, 120, 123
Offset: 1

Views

Author

Leroy Quet, Jun 07 2008

Keywords

Examples

			28 has the prime factorization 2^2 * 7^1. The sum of the exponents, 2+1 = 3, divides the sum of the distinct prime divisors, 2+7 = 9. So 28 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    seddpQ[n_]:=Module[{fi=Transpose[FactorInteger[n]]},Divisible[Total[ fi[[1]]],Total[ fi[[2]]]]]; Select[Range[2,150],seddpQ] (* Harvey P. Dale, Apr 13 2015 *)

Extensions

More terms from D. S. McNeil, Mar 23 2009

A173338 Numbers n such that tau(tau(n)) = sopf(sopf(n)), sopf = A008472.

Original entry on oeis.org

2, 4, 14, 16, 27, 64, 158, 168, 196, 216, 312, 378, 384, 440, 456, 482, 546, 680, 702, 744, 770, 1024, 1026, 1032, 1160, 1454, 1608, 1640, 1674, 1880, 2024, 2058, 2295, 2322, 2472, 2750, 2805, 2944, 3336, 3560, 3608, 3618, 3768, 3828, 3944, 3960, 4040, 4096
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

sopf(n) is the sum of distinct primes dividing n (without repetition, A008472), tau(n) is the number of divisors of n (A000005).

Examples

			4 is in the sequence: tau(4) = 3, tau(3) = 2; sopf(4) = 2, sopf(2) = 2.
546 is in the sequence: tau(546) = 16, tau(16) = 5; sopf(546) = 25, sopf(25) = 5.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    f:=func; g:=func; [k:k in [2..5000]|f(f(k)) eq g(g(k)) ]; // Marius A. Burtea, Nov 14 2019
  • Maple
    with(numtheory): for n from 1 to 60000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)): tt1:= ifactors(t2)[2] : tt2 :=sum(tt1[i][1], i=1..nops(tt1)):if tau(tau(n))= tt2 then print (n): else fi : od :
    # second Maple program:
    with(numtheory): sopf:= n-> add(i, i=factorset(n)):
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, 0, a(n-1))
          while tau(tau(k)) <> sopf(sopf(k)) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2010
  • Mathematica
    Select[Range[4100],DivisorSigma[0,DivisorSigma[0,#]]==Total[ Transpose[ FactorInteger[ Total[Transpose[FactorInteger[#]][[1]]]]][[1]]]&] (* Harvey P. Dale, Aug 05 2013 *)

Formula

{ n : A010553(n) = A008472(A008472(n)) }.

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010

A175704 Auto-convolution of A008472.

Original entry on oeis.org

0, 0, 4, 12, 17, 32, 54, 78, 95, 102, 149, 188, 213, 254, 360, 408, 463, 488, 617, 636, 769, 784, 1111, 1060, 1231, 1172, 1505, 1408, 1756, 1574, 1990, 2060, 2451, 2096, 3099, 2500, 2729, 2862, 3683, 3368, 4166, 3902, 4523, 4396, 4987, 4424, 6579, 5228
Offset: 1

Views

Author

Michel Lagneau, Aug 10 2010

Keywords

Comments

A008472 is the sum of the distinct primes dividing n.

Programs

Formula

a(n) = Sum_{k=1..n} A008472(k)*A008472(n+1-k).

A176147 a(n) = n^sopf(n), where sopf(n) is the sum of the distinct primes dividing n (A008472).

Original entry on oeis.org

1, 4, 27, 16, 3125, 7776, 823543, 64, 729, 10000000, 285311670611, 248832, 302875106592253, 20661046784, 2562890625, 256, 827240261886336764177, 1889568, 1978419655660313589123979, 1280000000, 16679880978201
Offset: 1

Views

Author

Michel Lagneau, Apr 10 2010

Keywords

Examples

			a(1) = 1^0 = 1;
a(2) = 2^2 = 4;
a(3) = 3^3 = 27;
a(4) = 4^2 = 16.
		

Crossrefs

Cf. A008472.

Programs

  • Mathematica
    Table[n^Total[Transpose[FactorInteger[n]][[1]]], {n, 20}]

Formula

a(n) = n^A008472(n).
Previous Showing 51-60 of 416 results. Next