A336633
Triangle read by rows: T(n,k) is the number of generalized permutations related to the degenerate Eulerian numbers with exactly k ascents (0 <= k <= max(0,n-1)).
Original entry on oeis.org
1, 1, 2, 2, 6, 16, 6, 24, 116, 116, 24, 120, 888, 1624, 888, 120, 720, 7416, 20984, 20984, 7416, 720, 5040, 67968, 270432, 419680, 270432, 67968, 5040, 40320, 682272, 3587904, 7861664, 7861664, 3587904, 682272, 40320, 362880, 7467840, 49701024, 144570624, 204403264, 144570624
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..max(0,n-1)) begins:
1;
1;
2, 2;
6, 16, 6;
24, 116, 116, 24;
120, 888, 1624, 888, 120;
720, 7416, 20984, 20984, 7416, 720;
5040, 67968, 270432, 419680, 270432, 67968, 5040;
...
-
Tnk[0, 0] := 1; for n to N do
for k from 0 to n do if 0 < k and k < n then Tnk[n, k] := (n + k)*Tnk[n - 1, k] + (2*n - k - 1)*Tnk[n - 1, k - 1]; else if k = 0 then Tnk[n, k] := (n + k)*Tnk[n - 1, k]; else Tnk[n, k] := 0; end if; end if; end do;
end do
A341111
T(n, k) = [x^k] M(n)*Sum_{k=0..n} E2(n, k)*binomial(-x + n - k, 2*n), where E2 are the second-order Eulerian numbers A340556 and M(n) are the Minkowski numbers A053657. Triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= 2*n+1.
Original entry on oeis.org
1, 0, 1, 1, 0, 10, 21, 14, 3, 0, 36, 96, 97, 47, 11, 1, 0, 12048, 36740, 45420, 29855, 11352, 2510, 300, 15, 0, 91200, 304480, 427348, 334620, 162255, 50787, 10302, 1310, 95, 3, 0, 109941120, 392583744, 603023624, 531477324, 300731214, 115291701, 30675678, 5682033, 719866, 59535, 2898, 63
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1, 1;
[2] 0, 10, 21, 14, 3;
[3] 0, 36, 96, 97, 47, 11, 1;
[4] 0, 12048, 36740, 45420, 29855, 11352, 2510, 300, 15;
[5] 0, 91200, 304480, 427348, 334620, 162255, 50787, 10302, 1310, 95, 3.
-
E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)):
CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x))]:
mser := series((y/(exp(y)-1))^x, y, 29): m := n -> denom(coeff(mser, y, n)):
poly := n -> expand(m(n)*add(E2(n, k)*binomial(-x+n-k, 2*n), k = 0..n)):
for n from 0 to 6 do CoeffList(poly(n)) od;
-
M(n) = prod(i=1, #factor(n!)~, prime(i)^sum(k=0, #binary(n), floor((n-1)/((prime(i)-1)*prime(i)^k)))) \\ from A053657
rows_upto(n) = my(v1, v2); v1 = vector(n, i, 0); v2 = vector(n+1, i, 0); v2[1] = 1; for(i=1, n, v1[i] = (i+x)*(i+x-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+x)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 = vector(n+1, i, M(i)*Vecrev(v2[i])) \\ Mikhail Kurkov, Aug 27 2025
A102147
Second Eulerian transform of 1, 2, 3, 4, 5, ... (A000027).
Original entry on oeis.org
1, 1, 5, 35, 315, 3465, 45045, 675675, 11486475, 218243025, 4583103525, 105411381075, 2635284526875, 71152682225625, 2063427784543125, 63966261320836875, 2110886623587616875, 73881031825566590625
Offset: 1
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 256.
Apparently equals
A051577(n-2), n > 1.
A156184
A generalized recursion triangle sequence : m=1; t(n,k)=(k + m - 1)*t(n - 1, k, m) + (m*n - k + 1 - m)*t(n - 1, k - 1, m).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 16, 7, 1, 1, 11, 53, 53, 11, 1, 1, 16, 150, 318, 150, 16, 1, 1, 22, 380, 1554, 1554, 380, 22, 1, 1, 29, 892, 6562, 12432, 6562, 892, 29, 1, 1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1, 1, 46, 4270, 89023, 480380, 825380, 480380
Offset: 0
{1},
{1, 1},
{1, 2, 1},
{1, 4, 4, 1},
{1, 7, 16, 7, 1},
{1, 11, 53, 53, 11, 1},
{1, 16, 150, 318, 150, 16, 1},
{1, 22, 380, 1554, 1554, 380, 22, 1},
{1, 29, 892, 6562, 12432, 6562, 892, 29, 1},
{1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1},
{1, 46, 4270, 89023, 480380, 825380, 480380, 89023, 4270, 46, 1}
-
m = 1; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
A156186
Triangle: m=3; e(n,k,n) = (k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k) = e(n,k,m) + e(n,n-k,m).
Original entry on oeis.org
2, 1, 1, 1, 6, 1, 1, 30, 30, 1, 1, 159, 360, 159, 1, 1, 1119, 3639, 3639, 1119, 1, 1, 10932, 41262, 57414, 41262, 10932, 1, 1, 136764, 582642, 898632, 898632, 582642, 136764, 1, 1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1, 1
Offset: 0
{2},
{1, 1},
{1, 6, 1},
{1, 30, 30, 1},
{1, 159, 360, 159, 1},
{1, 1119, 3639, 3639, 1119, 1},
{1, 10932, 41262, 57414, 41262, 10932, 1},
{1, 136764, 582642, 898632, 898632, 582642, 136764, 1},
{1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1},...
-
m = 3; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
A156188
Triangle: m=5; e(n,k,n)=(k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k)=e(n,k,m)+e(n,n-k,m).
Original entry on oeis.org
2, 1, 1, 1, 10, 1, 1, 80, 80, 1, 1, 775, 1520, 775, 1, 1, 10915, 25945, 25945, 10915, 1, 1, 213720, 542910, 624670, 542910, 213720, 1, 1, 5245530, 14690640, 16408670, 16408670, 14690640, 5245530, 1, 1, 151534685, 479956020, 553630850, 464654480
Offset: 0
{2},
{1, 1},
{1, 10, 1},
{1, 80, 80, 1},
{1, 775, 1520, 775, 1},
{1, 10915, 25945, 25945, 10915, 1},
{1, 213720, 542910, 624670, 542910, 213720, 1},
{1, 5245530, 14690640, 16408670, 16408670, 14690640, 5245530, 1},...
-
m = 5; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
A156278
A higher order recursion triangle sequence: m=3;l=3;e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n - 1, k - 1, m).
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 52, 44, 1, 1, 270, 716, 187, 1, 1, 1363, 8428, 7069, 762, 1, 1, 6831, 85143, 162039, 60151, 3065, 1, 1, 34174, 790440, 2889288, 2462504, 473162, 12280, 1, 1, 170892, 6972826, 44429208, 72035800, 32668794, 3557734, 49143, 1, 1, 854485
Offset: 0
{1},
{1, 1},
{1, 9, 1},
{1, 52, 44, 1},
{1, 270, 716, 187, 1},
{1, 1363, 8428, 7069, 762, 1},
{1, 6831, 85143, 162039, 60151, 3065, 1},
{1, 34174, 790440, 2889288, 2462504, 473162, 12280, 1},
{1, 170892, 6972826, 44429208, 72035800, 32668794, 3557734, 49143, 1},
{1, 854485, 59542232, 621204982, 1719368528, 1491834898, 397842620, 26034427, 196598, 1}
-
m = 3; l = 3;
e[n_, 0, m_] := 1; e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n
e[n_, k_, m_] := (l*k + m - 1)e[ n - 1, k, m] + (m*n - l*k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Flatten[%]
A156280
A higher order recursion triangle sequence: m=4;l=4;e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n - 1, k - 1, m).
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 93, 71, 1, 1, 664, 1618, 370, 1, 1, 4665, 26430, 20112, 1869, 1, 1, 32676, 370035, 645270, 216519, 9368, 1, 1, 228757, 4756581, 15969645, 12502371, 2164135, 46867, 1, 1, 1601328, 58041316, 339432876, 509029014, 212305928
Offset: 0
{1},
{1, 1},
{1, 12, 1},
{1, 93, 71, 1},
{1, 664, 1618, 370, 1},
{1, 4665, 26430, 20112, 1869, 1},
{1, 32676, 370035, 645270, 216519, 9368, 1},
{1, 228757, 4756581, 15969645, 12502371, 2164135, 46867, 1},
{1, 1601328, 58041316, 339432876, 509029014, 212305928, 20742624, 234366, 1},
{1, 11209329, 684892988, 6542526040, 16799641662, 13536529582, 3320027912, 193948962, 1171865, 1}
-
m = 4; l = 4;
e[n_, 0, m_] := 1; e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n
e[n_, k_, m_] := (l*k + m - 1)e[ n - 1, k, m] + (m*n - l*k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Flatten[%]
A219512
Triangle of third-order Eulerian numbers: 3-Stirling permutations enumerated by ascents.
Original entry on oeis.org
1, 1, 3, 1, 12, 15, 1, 33, 141, 105, 1, 78, 786, 1830, 945, 1, 171, 3450, 17538, 26685, 10395, 1, 360, 13257, 125352, 396495, 435960, 135135, 1, 741, 46971, 753291, 4238811, 9356175, 7921305, 2027025, 1, 1506, 157956, 4046526, 37013166, 140913270, 233216460, 158799690, 34459425
Offset: 1
Triangle begins
.n\k.|..0....1......2.......3......4........5.......6
= = = = = = = = = = = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....3
..3..|..1...12.....15
..4..|..1...33....141.....105
..5..|..1...78....786....1830....945
..6..|..1..171...3450...17538..26685....10395
..7..|..1..360..13257..125352.396495...435960..135135
...
Example of recurrence: T(5,2) = 3*141 + 11*33 = 786.
Row 2 = [1,3]. The 3-Stirling permutations of order 2 are obtained by inserting the string 222 into one of the four available positions in the string 111, giving 222111, 122211, 112221 and 111222. The first permutation has no ascents while the remaining three permutations each have 1 ascent.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- Tian-Xiao He, The mth-order Eulerian Numbers, arXiv:2312.17153 [math.CO], 2023.
- Svante Janson, Markus Kuba, and Alois Panholzer, Generalized Stirling permutations, families of increasing trees and urn models arXiv:0805.4084v1 [math.CO], 2008.
- SeungKyung Park, Inverse descents of r-multipermutations, Discrete Mathematics 132, 1-3, 215-229, 1994.
- Grzegorz Rzadkowski and Malgorzata Urlinska, A Generalization of the Eulerian Numbers, arXiv preprint arXiv:1612.06635 [math.CO], 2016-2017.
- Umesh Shankar, Log-concavity of rows of triangular arrays satisfying a certain super-recurrence, arXiv:2508.12467 [math.CO], 2025. See p. 4.
-
T[n_, k_] /; 1 <= k <= n-1 := T[n, k] = (k+1) T[n-1, k] + (3n-k-2) T[n-1, k-1]; T[, 0] = 1; T[, _] = 0;
Table[T[n, k], {n, 1, 9}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 12 2019 *)
A321591
Partitioned 2nd-order Eulerian numbers forming an "Eulerian pyramid" (tetrahedron).
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 1, 11, 11, 11, 36, 11, 1, 11, 11, 1, 1, 26, 26, 66, 196, 66, 26, 196, 196, 26, 1, 26, 66, 26, 1, 1, 57, 57, 302, 848, 302, 302, 1898, 1898, 302, 57, 848, 1898, 848, 57, 1, 57, 302, 302, 57, 1, 1, 120, 120, 1191, 3228, 1191, 2416, 13644
Offset: 0
The first few slices of the tetrahedron (and row sums) are:
1 (1); i=0, N=0, (j,k)=(0,0)
------------------------
1 (1); i=0, N=1, (j,k)=(0,0)
1 1 (2); i=1, N=1, (j,k)=(1,0) (0,1)
------------------------
1 (1); i=0, N=2, (j,k)=(0,0)
4 4 (8); i=1, N=2, (j,k)=(1,0) (0,1)
1 4 1 (6); i=2, N=2, (j,k)=(2,0) (1,1) (0,2)
------------------------
1 (1); i=0, N=3, (j,k)=(0,0)
11 11 (22); i=1, N=3, (j,k)=(1,0) (0,1)
11 36 11 (58); i=2, N=3, (j,k)=(2,0) (1,1) (0,2)
1 11 11 1 (24); i=3, N=3, (j,k)=(3,0) (2,1) (1,2) (0,3)
------------------------
1 (1); i=0, N=4, (j,k)=(0,0)
26 26 (52); i=1, N=4, (j,k)=(1,0) (0,1)
66 196 66 (328); i=2, N=4, (j,k)=(2,0) (1,1) (0,2)
26 196 196 26 (444); i=3, N=4, (j,k)=(3,0) (2,1) (1,2) (0,3)
1 26 66 26 1 (120); i=4, N=4, (j,k)=(4,0) (3,1) (2,2) (1,3) (0,4)
Comments