cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 595 results. Next

A280055 Nachos sequence based on 1 plus primes (A008578).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 4, 2, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 4, 3, 4, 5, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 4, 3, 4, 5, 3, 2, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 4, 3, 4, 5, 3, 2, 3, 4, 3
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2017

Keywords

Comments

Like A280053 but based on 1,2,3,5,7,11,... rather than squares. See that entry for further information.
Equivalently, greedily subtract terms of A014284 from n until reaching 0; a(n) = number of steps required.

Examples

			26 takes 4 phases to read 0:
subtract leaves
1   25
2   23
3   20
5   15
7   8
------
1   7
2   5
3   2
------
1   1
------
1   0
so a(26) = 4
		

Crossrefs

For records see A280760.

Programs

  • Maple
    A280055 := proc(n)
        local a,nres,i ;
        a := 0 ;
        nres := n;
        while nres > 0 do
            for i from 1 do
                if A014284(i) > nres then
                    break;
                end if;
            end do:
            nres := nres-A014284(i-1) ;
            a := a+1 ;
        end do:
        a ;
    end proc:
    seq(A280055(n),n=1..80) ; # R. J. Mathar, Mar 05 2017

A327154 a(n) = Product_{d|n, d>1} A008578(1+A286561(sigma(n),d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 6, 1, 5, 2, 1, 1, 2, 1, 2, 1, 3, 1, 48, 1, 2, 1, 80, 1, 45, 1, 1, 2, 2, 1, 1, 1, 3, 1, 8, 1, 44, 1, 6, 2, 5, 1, 6, 1, 1, 3, 2, 1, 20, 1, 20, 1, 2, 1, 80, 1, 11, 1, 1, 1, 63, 1, 2, 2, 7, 1, 2, 1, 2, 1, 6, 1, 20, 1, 2, 1, 2, 1, 264, 1, 3, 2, 6, 1, 48, 2, 10, 1, 7, 2, 108, 1, 1, 2, 1, 1, 125, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A327154(n) = { my(m=1,s=sigma(n),v); fordiv(n,d,if((d>1) && ((v = valuation(s,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(1+A286561(sigma(n),d)), where sigma = A000203.
Other identities. For all n >= 1:
1+A001222(a(n)) = A073802(n).

A327155 a(n) = Product_{d|sigma(n), d>1} A008578(1+A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 8, 1, 1, 1, 2, 1, 6, 1, 2, 2, 1, 1, 3, 1, 3, 1, 2, 1, 80, 1, 2, 1, 48, 1, 8, 1, 1, 2, 2, 1, 1, 1, 2, 1, 20, 1, 8, 1, 6, 3, 2, 1, 21, 1, 1, 2, 3, 1, 20, 1, 20, 1, 2, 1, 48, 1, 2, 1, 1, 1, 8, 1, 3, 2, 2, 1, 3, 1, 2, 1, 6, 1, 8, 1, 7, 1, 2, 1, 48, 1, 2, 2, 10, 1, 48, 2, 6, 1, 2, 2, 264, 1, 1, 3, 1, 1, 8, 1, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A327155(n) = { my(m=1,v); fordiv(sigma(n),d,if((d>1) && ((v = valuation(n,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|sigma(n), d>1} A008578(1+A286561(n,d)), where sigma = A000203.
Other identities. For all n >= 1:
1+A001222(a(n)) = A073802(n).

A327156 a(n) = Product_{d|n, d>1} A008578(1+A286561(n,sigma(d))), where A286561(n,x) gives the highest exponent of x dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 5, 1, 8, 1, 1, 1, 16, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A327156(n) = { my(m=1,v); fordiv(n,d,if((d>1) && ((v = valuation(n,sigma(d)))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(1+A286561(n,sigma(d))), where sigma = A000203.
Other identities. For all n >= 1:
1+A001222(a(n)) = A173441(n).

A116151 a(n) = smallest positive integer x satisfying the system of congruences { x == 1 (mod 2), x == 2 (mod 3), x == 3 (mod 5), x == 5 (mod 7), ..., x == A008578(n) (mod A008578(n+1)) }.

Original entry on oeis.org

1, 5, 23, 173, 2273, 2273, 452723, 6578843, 113275433, 3682761353, 10152454583, 5024164707833, 249908523156563, 5726413266646343, 345878207890067123, 15103232990013860963, 1905274424667036455303, 111502614383457156882293
Offset: 1

Views

Author

Christian Bjartli (cbjartli(AT)gmail.com), Apr 14 2007

Keywords

Comments

Minimum Chinese Remainder Prime Modulus Ladder: for the n-th term, the number modulus a prime equals the previous prime for the first n primes (the initial term is defined to be 1). - Fred Schneider, Oct 21 2007

Examples

			a(3)=23 because that is the smallest number such that n==1 (mod 2), n==2 (mod 3) and n == 3 (mod 5).
		

Crossrefs

Cf. A070198.

Programs

  • Maple
    Primes:= [1,seq(ithprime(i),i=1..30)]:
    seq(chrem(Primes[1..k],Primes[2..k+1]),k=1..30); # Robert Israel, Oct 26 2018
  • Mathematica
    Table[ChineseRemainder[Join[{1},Prime[Range[n-1]]],Prime[Range[n]]],{n,20}] (* Harvey P. Dale, Mar 30 2018 *)
  • PARI
    { a(n) = lift(chinese(vector(n,i,Mod(if(i==1,1,prime(i-1)),prime(i))))) }; vector(30,n,a(n)) \\ Max Alekseyev, Apr 16 2007
    
  • PARI
    my(z=Mod(1,2)); forprime(x=3,100,z=chinese(z,Mod(precprime(x-1),x)); print1(lift(z), ", ")); \\ Fred Schneider, Oct 21 2007

Extensions

More terms from Max Alekseyev, Apr 16 2007
Edited by N. J. A. Sloane, May 05 2007
Further edited by N. J. A. Sloane, Jun 30 2008 at the suggestion of R. J. Mathar and Christian Bjartli.

A162618 Triangle read by rows in which row n lists n consecutive natural numbers A000027, starting with A008578(n-1) - n + 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 3, 4, 5, 3, 4, 5, 6, 7, 6, 7, 8, 9, 10, 11, 7, 8, 9, 10, 11, 12, 13, 10, 11, 12, 13, 14, 15, 16, 17, 11, 12, 13, 14, 15, 16, 17, 18, 19, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2009

Keywords

Comments

Note that the last term of the n-th row is the noncomposite number A008578(n-1).

Examples

			Contribution from _Omar E. Pol_, Jul 15 2009: (Start)
Triangle begins:
   1;
   1,  2;
   1,  2,  3;
   2,  3,  4,  5;
   3,  4,  5,  6,  7;
   6,  7,  8,  9, 10, 11;
   7,  8,  9, 10, 11, 12, 13;
  10, 11, 12, 13, 14, 15, 16, 17;
  11, 12, 13, 14, 15, 16, 17, 18, 19;
  14, 15, 16, 17, 18, 19, 20, 21, 22, 23;
  19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29;
  20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31;
(End)
		

Crossrefs

A243498 Records (and distinct values) of A243069: a(n) = A243069(A008578(n)).

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 12, 13, 15, 16, 19, 21, 22, 27, 28, 30, 31, 36, 37, 39, 42, 45, 46, 49, 51, 52, 57, 58, 60, 61, 66, 69, 72, 73, 75, 76, 81, 82, 87, 88, 91, 96, 97, 99, 102, 105, 109, 111, 112, 118, 120, 126, 127, 129, 132, 133, 135, 136, 142, 147, 148, 150
Offset: 1

Views

Author

Antti Karttunen, Jun 21 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A243069(A008578(n)).

A329037 a(n) = Product_{d|n, d>1} A008578(1+A286561(A276086(n),d)), where A286561(x,d) gives the exponent of the highest power of d dividing x.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 12, 1, 1, 1, 1, 5, 2, 1, 1, 1, 21, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 12, 1, 1, 1, 2, 10, 2, 1, 1, 1, 7, 2, 2, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 12, 1, 1, 1, 1, 48, 1, 3, 1, 1, 5, 2, 1, 1, 3, 7, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 10, 2, 2, 1, 1, 1, 1, 720
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2019

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329037(n) = { my(m=1,x=A276086(n),v); fordiv(n,d,if((d>1) && ((v = valuation(x,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(1+A286561(A276086(n),d)).
1+A001222(a(n)) = A327168(n).

A329042 a(n) = Product_{d|n, d>1} A008578(1+A286561(A122111(n),d)), where A286561(x,d) gives the exponent of the highest power of d dividing x.

Original entry on oeis.org

1, 2, 1, 1, 1, 8, 1, 1, 6, 3, 1, 2, 1, 5, 3, 1, 1, 2, 1, 48, 3, 7, 1, 2, 1, 11, 1, 10, 1, 128, 1, 1, 3, 13, 1, 2, 1, 17, 3, 6, 1, 12, 1, 21, 3, 19, 1, 2, 1, 2, 3, 33, 1, 1, 1, 320, 3, 23, 1, 8, 1, 29, 1, 1, 1, 20, 1, 65, 3, 8, 1, 2, 1, 31, 48, 85, 1, 28, 1, 6, 1, 37, 1, 3072, 1, 41, 3, 42, 1, 8, 1, 133, 3, 43, 1, 2, 1, 1, 1, 1, 1, 44, 1, 66, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2019

Keywords

Crossrefs

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A329042(n) = { my(m=1,x=A122111(n),v); fordiv(n,d,if((d>1) && ((v = valuation(x,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(1+A286561(A122111(n),d)).
1+A001222(a(n)) = A329036(n).

A329043 a(n) = Product_{d|A122111(n), d>1} A008578(1+A286561(n,d)), where A286561(n,d) gives the exponent of the highest power of d dividing n.

Original entry on oeis.org

1, 2, 1, 1, 1, 8, 1, 1, 6, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 48, 2, 2, 1, 5, 1, 2, 1, 6, 1, 128, 1, 1, 2, 2, 1, 3, 1, 2, 2, 10, 1, 8, 1, 6, 2, 2, 1, 7, 1, 3, 2, 6, 1, 1, 1, 320, 2, 2, 1, 12, 1, 2, 1, 1, 1, 8, 1, 6, 2, 8, 1, 3, 1, 2, 48, 6, 1, 8, 1, 21, 1, 2, 1, 3072, 1, 2, 2, 20, 1, 8, 1, 6, 2, 2, 1, 11, 1, 1, 1, 1, 1, 8, 1, 20, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2019

Keywords

Crossrefs

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A329043(n) = { my(m=1,v); fordiv(A122111(n),d,if((d>1) && ((v = valuation(n,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|A122111(n), d>1} A008578(1+A286561(n,d)).
1+A001222(a(n)) = A329036(n).
Previous Showing 21-30 of 595 results. Next