cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A144619 a(n) = 19*n + 8.

Original entry on oeis.org

8, 27, 46, 65, 84, 103, 122, 141, 160, 179, 198, 217, 236, 255, 274, 293, 312, 331, 350, 369, 388, 407, 426, 445, 464, 483, 502, 521, 540, 559, 578, 597, 616, 635, 654, 673, 692, 711, 730, 749, 768, 787, 806, 825, 844, 863, 882, 901, 920, 939, 958, 977, 996
Offset: 0

Views

Author

Vincenzo Librandi, Jan 15 2009

Keywords

Crossrefs

Programs

Formula

From Vincenzo Librandi, May 14 2012: (Start)
G.f.: (11*x+8)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: exp(x)*(8 + 19*x). - Elmo R. Oliveira, Apr 04 2025

Extensions

Offset corrected by Jon E. Schoenfield, Jun 17 2010

A138129 Multiples of 1729, the Hardy-Ramanujan number.

Original entry on oeis.org

0, 1729, 3458, 5187, 6916, 8645, 10374, 12103, 13832, 15561, 17290, 19019, 20748, 22477, 24206, 25935, 27664, 29393, 31122, 32851, 34580, 36309, 38038, 39767, 41496, 43225, 44954, 46683, 48412, 50141, 51870, 53599, 55328, 57057, 58786, 60515, 62244, 63973, 65702, 67431
Offset: 0

Views

Author

Omar E. Pol, Mar 09 2008

Keywords

Comments

About 1729: "No," said Ramanujan, "It is a very interesting number..."

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, p. 153.

Crossrefs

Programs

Formula

a(n) = 1729*n.
From Elmo R. Oliveira, Jun 23 2025: (Start)
G.f.: 1729*x/(1-x)^2.
E.g.f.: 1729*x*exp(x).
a(n) = 91*A008601(n).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

More terms from Elmo R. Oliveira, Jun 23 2025

A166392 Multiples of 19 whose reversal + 1 is also a multiple of 19.

Original entry on oeis.org

57, 570, 722, 893, 1254, 1406, 1577, 1729, 2641, 2964, 3097, 3249, 4161, 4313, 4484, 4636, 4959, 5700, 5871, 6156, 6308, 6479, 7220, 7391, 7543, 7866, 8930, 9063, 9215, 9386, 9538
Offset: 1

Views

Author

Claudio Meller, Oct 13 2009

Keywords

Crossrefs

Subsequence of A008601.

Programs

  • Mathematica
    Select[19 Range[5!], Divisible[FromDigits[Reverse[IntegerDigits[#]]] + 1, 19] &](* G. C. Greubel, May 12 2016 *)

A166399 Multiples of 19 whose digit reversal - 1 is also a multiple of 19.

Original entry on oeis.org

247, 1083, 1235, 1558, 2470, 2622, 2793, 2945, 3078, 4142, 4465, 4617, 4788, 5852, 6137, 7201, 7372, 7524, 7695, 7847, 8911, 9044, 9367, 9519, 10830, 11115, 11286, 11438, 12350, 12502, 12673, 12825, 12996, 14022, 14193, 14345, 14668, 15580, 15732
Offset: 1

Views

Author

Claudio Meller, Oct 13 2009

Keywords

Crossrefs

Subsequence of A008601.

Programs

  • Mathematica
    Select[19 Range[5!], Divisible[FromDigits[Reverse[IntegerDigits[#]]] - 1, 19] &] (* G. C. Greubel, May 12 2016 *)

Extensions

Keyword:base added by R. J. Mathar, Oct 16 2009

A377030 Period 19: repeat [0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3].

Original entry on oeis.org

0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3, 0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3, 0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3, 0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3, 0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3, 0
Offset: 0

Views

Author

Neil Vaughan, Oct 13 2024

Keywords

Comments

Difference between the multiples of 3 (A008585) and the closest multiple of 19 (A008601). For any two numbers (in this case p=3 and q=19), a sequence is produced consisting of a palindrome cycle. If p and q are coprime, then the cycle length is equal to max(p,q). The biggest number in the sequence will be at most half of max(p,q). Here is a plot of the first cycle of this sequence:
9 X X
8 X X
7 X X
6 X X
5 X X
4 X X
3 X X
2 X X
1 X X
0 X X

Crossrefs

Programs

  • C
    int p = 3;
    int q = 19;
    for (int t = 0;t <= 99;t++) {
    	int closest = 999;
    	for (int i = 0;i <= 99;i++) {
    		int dist=abs(i * q - t * p);
    		if (dist < closest) {
    			closest = dist;
    		}
    	}
    	printf("%i, ", closest);
    }
    
  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},{0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3},96] (* James C. McMahon, Oct 31 2024 *)
  • PARI
    a(n) = my(n3 = 3*n); min(n3 - 19*floor(n3/19), ceil(19*ceil(n3/19) - n3)) \\ David A. Corneth, Oct 14 2024
    
  • Python
    def A377030(n): return (0, 3, 6, 9, 7, 4, 1, 2, 5, 8, 8, 5, 2, 1, 4, 7, 9, 6, 3)[n%19] # Chai Wah Wu, Oct 31 2024

Formula

a(n) = a(n-19). - David A. Corneth, Oct 14 2024
a(n) = min(3*n-19*floor(3*n/19), 19*ceil(3*n/19)-3*n).
Previous Showing 11-15 of 15 results.