cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A348388 Irregular triangle read by rows: T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.

Original entry on oeis.org

1, 2, 3, 1, 4, 1, 5, 2, 1, 6, 2, 1, 7, 3, 1, 1, 8, 3, 2, 1, 9, 4, 2, 1, 1, 10, 4, 2, 1, 1, 11, 5, 3, 2, 1, 1, 12, 5, 3, 2, 1, 1, 13, 6, 3, 2, 1, 1, 1, 14, 6, 4, 2, 2, 1, 1, 15, 7, 4, 3, 2, 1, 1, 1, 16, 7, 4, 3, 2, 1, 1, 1, 17, 8, 5, 3, 2, 2, 1, 1, 1, 18, 8, 5, 3, 2, 2, 1, 1, 1, 19, 9, 5, 4, 3, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Wolfdieter Lang, Oct 31 2021

Keywords

Comments

This irregular triangle T(n, k) gives the number of multiples of number k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2), for n >= 2. See A348389 for the array of these multiples.
The length of row n is floor(n/2) = A004526(n), for n >= 2.
The row sums give A002541(n). See the formula given there by Wesley Ivan Hurt, May 08 2016.
The columns give the k-fold repeated positive integers k, for k >= 1.

Examples

			The irregular triangle T(n, k) begins:
n\k   1 2 3 4 5 6 7 8 9 10 ...
------------------------------
2:    1
3:    2
4:    3 1
5:    4 1
6:    5 2 1
7:    6 2 1
8:    7 3 1 1
9:    8 3 2 1
10:   9 4 2 1 1
11:  10 4 2 1 1
12:  11 5 3 2 1 1
13:  12 5 3 2 1 1
14:  13 6 3 2 1 1 1
15:  14 6 4 2 2 1 1
16:  15 7 4 3 2 1 1 1
17:  16 7 4 3 2 1 1 1
18:  17 8 5 3 2 2 1 1 1
19:  18 8 5 3 2 2 1 1 1
20:  19 9 5 4 3 2 1 1 1  1
...
		

Crossrefs

Columns k (with varying offsets): A000027, A004526, A008620, A008621, A002266, A097992, ...

Programs

  • Mathematica
    T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* Amiram Eldar, Nov 02 2021 *)
  • Python
    def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)]
    for n in range(2, 21): print(A348388row(n))  # Peter Luschny, Nov 05 2021

Formula

T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2.
G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)).

A110868 Molien series for real 32-dimensional Clifford group of genus 5 and order 96253116206284800.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 7, 9, 16, 23, 46, 74
Offset: 0

Views

Author

G. Nebe, Sep 21 2005

Keywords

Crossrefs

Cf. A008621, A008718, A024186, A110160, this sequence, A110869, A110876, A110880. See also A001309.

A193771 Expansion of 1 / (1 - x - x^3 + x^6) in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 23, 31, 41, 54, 72, 96, 127, 168, 223, 296, 392, 519, 688, 912, 1208, 1600, 2120, 2809, 3721, 4929, 6530, 8651, 11460, 15181, 20111, 26642, 35293, 46753, 61935, 82047, 108689, 143982, 190736, 252672, 334719, 443408, 587391
Offset: 0

Views

Author

Michael Somos, Jan 01 2013

Keywords

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^3+x^6)));  // G. C. Greubel, Aug 10 2018
  • Mathematica
    CoefficientList[Series[1/(1-x-x^3+x^6),{x,0,50}],x] (* or *) LinearRecurrence[ {1,0,1,0,0,-1},{1,1,1,2,3,4},50] (* Harvey P. Dale, Jul 25 2017 *)
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( - x^6 / (1 - x^3 - x^5 + x^6) + x * O(x^n), n), polcoeff( 1 / (1 - x - x^3 + x^6) + x * O(x^n), n))};
    

Formula

G.f.: 1 / (1 - x - x^3 + x^6) = 1 / (1 - x / (1 - x^2 / (1 + x^2 / (1 - x / (1 + x / (1 + x^2 / (1 - x^2))))))).
a(n) = a(n-1) + a(n-3) - a(n-6) for all n in Z.
Convolution of A008621 and A000931. PSUM transform of A017818.

A052614 E.g.f. 1/((1-x)(1-x^4)).

Original entry on oeis.org

1, 1, 2, 6, 48, 240, 1440, 10080, 120960, 1088640, 10886400, 119750400, 1916006400, 24908083200, 348713164800, 5230697472000, 104613949440000, 1778437140480000, 32011868528640000, 608225502044160000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Prod(Sequence(Z),Sequence(Prod(Z,Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/((1-x)(1-x^4)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 30 2013 *)

Formula

E.g.f.: 1/(-1+x)/(-1+x^4)
Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, (-61*n-11*n^3-n^4-30-41*n^2)*a(n) +(-n^2-5*n-6)*a(n+1) +(-n-3)*a(n+2) +a(n+4) -a(n+3)=0}
(Sum(1/16*(2*_alpha+_alpha^2-1)*_alpha^(-1-n), _alpha=RootOf(1+_Z+_Z^2+_Z^3))+1/4*n+5/8)*n!
n!*[n/4+1].
a(n)=n!*A008621(n). - R. J. Mathar, Jun 03 2022
Previous Showing 21-24 of 24 results.