cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A333647 Number of nonnegative lattice paths from (0,0) to (n,0) such that slopes of adjacent steps differ by at most one, assuming zero slope before and after the paths.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 34, 74, 169, 397, 953, 2319, 5732, 14370, 36466, 93468, 241767, 630499, 1656372, 4380128, 11652459, 31168689, 83788315, 226272531, 613632359, 1670604607, 4564607998, 12513715526, 34412992018, 94912212872, 262484672621, 727770127583
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2020

Keywords

Comments

The maximal height in all paths of length n is floor(ceil(n/2)^2/4) = A008642(n-3) for n>2.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1, add(
          b(x-1, y+j, j), j=max(t-1, -y)..min(x*(x-1)/2-y, t+1)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..40);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Sum[
         b[x-1, y+j, j], {j, Max[t-1, -y], Min[x(x-1)/2-y, t+1]}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)

A128494 Coefficient table for sums of Chebyshev's S-Polynomials.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, -1, -2, 1, 1, 1, 2, -2, -3, 1, 1, 0, 2, 4, -3, -4, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, -2, -6, 7, 11, -5, -6, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, 3, 9, -13, -24, 16, 22, -7, -8, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, -3, -12, 22, 46, -40, -62, 29, 37, -9, -10, 1, 1, 1, 4, -12
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2007

Keywords

Comments

See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.
This is a 'repetition triangle' based on a signed version of triangle A059260: a(2*p,2*k) = a(2*p+1,2*k) = A059260(p+k,2*k)*(-1)^(p+k) and a(2*p+1,2*k+1) = a(2*p+2,2*k+1) = A059260(p+k+1,2*k+1)*(-1)^(p+k), k >= 0.

Examples

			The triangle a(n,m) begins:
  n\m  0   1   2   3   4   5   6   7   8   9  10
   0:  1
   1:  1   1
   2:  0   1   1
   3:  0  -1   1   1
   4:  1  -1  -2   1   1
   5:  1   2  -2  -3   1   1
   6:  0   2   4  -3  -4   1   1
   7:  0  -2   4   7  -4  -5   1   1
   8:  1  -2  -6   7  11  -5  -6   1   1
   9:  1   3  -6 -13  11  16  -6  -7   1   1
  10:  0   3   9 -13 -24  16  22  -7  -8   1   1
... reformatted by _Wolfdieter Lang_, Oct 16 2012
Row polynomial S(1;4,x) = 1 - x - 2*x^2 + x^3 + x^4 = Sum_{k=0..4} S(k,x).
S(4,y)*S(5,y)/y = 3 - 13*y^2 + 16*y^4 - 7*y^6 + y^8, with y=sqrt(2+x) this becomes S(1;4,x).
From _Wolfdieter Lang_, Oct 16 2012: (Start)
S(1;4,x) = (1 - (S(5,x) - S(4,x)))/(2-x) = (1-x)*(2-x)*(1+x)*(1-x-x^2)/(2-x) = (1-x)*(1+x)*(1-x-x^2).
S(5,x) - S(4,x) = R(11,sqrt(2+x))/sqrt(2+x) = -1 + 3*x + 3*x^2 - 4*x^3 - x^4 + x^5. (End)
		

Crossrefs

Row sums (signed): A021823(n+2). Row sums (unsigned): A070550(n).
Cf. A128495 for S(2; n, x) coefficient table.
The column sequences (unsigned) are, for m=0..4: A021923, A002265, A008642, A128498, A128499.
For m >= 1 the column sequences (without leading zeros) are of the form a(m, 2*k) = a(m, 2*k+1) = ((-1)^k)*b(m, k) with the sequences b(m, k), given for m=1..11 by A008619, A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808.

Formula

S(1;n,x) = Sum_{k=0..n} S(k,x) = Sum_{m=0..n} a(n,m)*x^m, n >= 0.
a(n,m) = [x^m](S(n,y)*S(n+1,y)/y) with y:=sqrt(2+x).
G.f. for column m: (x^m)/((1-x)*(1+x^2)^(m+1)), which shows that this is a lower diagonal matrix of the Riordan type, named (1/((1+x^2)*(1-x)), x/(1+x^2)).
From Wolfdieter Lang, Oct 16 2012: (Start)
a(n,m) = [x^m](1- (S(n+1,x) - S(n,x)))/(2-x). From the Binet - de Moivre formula for S and use of the geometric sum.
a(n,m) = [x^m](1- R(2*n+3,sqrt(2+x))/sqrt(2+x))/(2-x) with the monic integer T-polynomials R with coefficient triangle given in A127672. From the odd part of the bisection of the T-polynomials. (End)

A325695 Number of length-3 strict integer partitions of n such that the largest part is not the sum of the other two.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 2, 5, 5, 8, 7, 12, 11, 16, 15, 21, 20, 27, 25, 33, 32, 40, 38, 48, 46, 56, 54, 65, 63, 75, 72, 85, 83, 96, 93, 108, 105, 120, 117, 133, 130, 147, 143, 161, 158, 176, 172, 192, 188, 208, 204, 225, 221, 243, 238, 261, 257, 280, 275
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Examples

			The a(7) = 1 through a(15) = 12 partitions (A = 10, B = 11, C = 12):
  (421)  (521)  (432)  (631)  (542)  (543)  (643)   (653)   (654)
                (531)  (721)  (632)  (732)  (652)   (842)   (753)
                (621)         (641)  (741)  (742)   (851)   (762)
                              (731)  (831)  (751)   (932)   (843)
                              (821)  (921)  (832)   (941)   (852)
                                            (841)   (A31)   (861)
                                            (931)   (B21)   (942)
                                            (A21)           (951)
                                                            (A32)
                                                            (A41)
                                                            (B31)
                                                            (C21)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&#[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 15 2019: (Start)
G.f.: x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9.
(End)
a(n) = A325696(n)/6. - Alois P. Heinz, Jun 18 2020

A333679 Sum of the heights of all nonnegative lattice paths from (0,0) to (n,0) such that slopes of adjacent steps differ by at most one, assuming zero slope before and after the paths.

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 20, 53, 137, 375, 1035, 2878, 7988, 22308, 62642, 176692, 499818, 1418228, 4035568, 11512449, 32916181, 94313011, 270757747, 778694171, 2243200705, 6471953522, 18699169766, 54098598824, 156706773404, 454457344755, 1319382151919, 3834346819731
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2020

Keywords

Comments

The maximal height in all paths of length n is floor(ceil(n/2)^2/4) = A008642(n-3) for n>2.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, h) option remember;
          `if`(x=0, h, add(b(x-1, y+j, j, max(h, y)),
             j=max(t-1, -y)..min(x*(x-1)/2-y, t+1)))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..32);
  • Mathematica
    b[x_, y_, t_, h_] := b[x, y, t, h] =
         If[x == 0, h, Sum[b[x - 1, y + j, j, Max[h, y]],
         {j, Max[t - 1, -y], Min[x(x - 1)/2 - y, t + 1]}]];
    a[n_] := b[n, 0, 0, 0];
    a /@ Range[0, 32] (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)

A128498 Fourth column (m=3) of triangle A128494.

Original entry on oeis.org

1, 1, -3, -3, 7, 7, -13, -13, 22, 22, -34, -34, 50, 50, -70, -70, 95, 95, -125, -125, 161, 161, -203, -203, 252, 252, -308, -308, 372, 372, -444, -444, 525, 525, -615, -615, 715, 715, -825, -825, 946, 946, -1078, -1078, 1222, 1222, -1378, -1378, 1547, 1547, -1729, -1729, 1925, 1925, -2135, -2135
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2007

Keywords

Comments

Unsigned, this is the repeated sequence A002623.

Crossrefs

Cf. A008642 (unsigned column m=2). A128499 (column m=4).

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1+x^2)^4),{x,0,60}],x] (* or *) LinearRecurrence[{1,-4,4,-6,6,-4,4,-1,1},{1,1,-3,-3,7,7,-13,-13,22},60] (* Harvey P. Dale, Jul 04 2021 *)
  • PARI
    Vec(1/((1-x)*(1+x^2)^4) + O(x^50)) \\ Michel Marcus, Mar 16 2015

Formula

G.f.: 1/((1-x)*(1+x^2)^4).
a(2*k) = a(2*k+1)= ((-1)^k)*A002623(n), k>=0.
a(n) = (-1)^((2*n-1+(-1)^n)/4)*((n+2)*(n+7)*(2*n+9)+3*(n+3)*(n+6)*(-1)^n+12*(-1)^((2*n-1+(-1)^n)/4))/192. - Luce ETIENNE, Mar 13 2015

A246720 Number A(n,k) of partitions of n into parts of the k-th list of distinct parts in the order given by A246688; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 0, 1, 0, 1, 1, 0, 2, 0, 3, 1, 1, 0, 1, 0, 1, 0, 2, 0, 4, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 4, 1, 1, 0, 1, 1, 0, 1, 2, 0, 3, 0, 5, 0, 1, 0, 1, 1, 2, 0, 1, 2, 0, 3, 0, 5, 1, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2014

Keywords

Comments

The first lists of distinct parts in the order given by A246688 are: 0:[], 1:[1], 2:[2], 3:[1,2], 4:[3], 5:[1,3], 6:[4], 7:[1,4], 8:[2,3], 9:[5], 10:[1,2,3], 11:[1,5], 12:[2,4], 13:[6], 14:[1,2,4], 15:[1,6], 16:[2,5], 17:[3,4], 18:[7], 19:[1,2,5], 20:[1,3,4], ... .

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1,  1, ...
  0, 1, 0, 1, 0, 1, 0, 1, 0, 0,  1, 1, 0, 0,  1, ...
  0, 1, 1, 2, 0, 1, 0, 1, 1, 0,  2, 1, 1, 0,  2, ...
  0, 1, 0, 2, 1, 2, 0, 1, 1, 0,  3, 1, 0, 0,  2, ...
  0, 1, 1, 3, 0, 2, 1, 2, 1, 0,  4, 1, 2, 0,  4, ...
  0, 1, 0, 3, 0, 2, 0, 2, 1, 1,  5, 2, 0, 0,  4, ...
  0, 1, 1, 4, 1, 3, 0, 2, 2, 0,  7, 2, 2, 1,  6, ...
  0, 1, 0, 4, 0, 3, 0, 2, 1, 0,  8, 2, 0, 0,  6, ...
  0, 1, 1, 5, 0, 3, 1, 3, 2, 0, 10, 2, 3, 0,  9, ...
  0, 1, 0, 5, 1, 4, 0, 3, 2, 0, 12, 2, 0, 0,  9, ...
  0, 1, 1, 6, 0, 4, 0, 3, 2, 1, 14, 3, 3, 0, 12, ...
		

Crossrefs

Main diagonal gives A246721.
Cf. A246688, A246690 (the same for compositions).

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    f:= proc() local i, l; i, l:=0, [];
          proc(n) while n>=nops(l)
            do l:=[l[], b(i, 1)[]]; i:=i+1 od; l[n+1]
          end
        end():
    g:= proc(n, l) option remember; `if`(n=0, 1, `if`(l=[], 0,
          add(g(n-l[-1]*j, subsop(-1=NULL, l)), j=0..n/l[-1])))
        end:
    A:= (n, k)-> g(n, f(k)):
    seq(seq(A(n, d-n), n=0..d), d=0..16);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i > n, {}, Join[Prepend[#, i]& /@ b[n - i, i + 1], b[n, i + 1]]]];
    f = Module[{i = 0, l = {}}, Function[n, While[ n >= Length[l], l = Join[l, b[i, 1]]; i++ ]; l[[n + 1]]]];
    g[n_, l_] := g[n, l] = If[n == 0, 1, If[l == {}, 0, Sum[g[n - l[[-1]] j, ReplacePart[l, -1 -> Nothing]], {j, 0, n/l[[-1]]}]]];
    A[n_, k_] := g[n, f[k]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 16}] // Flatten (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

A355880 a(n) is a maximum of t*u*v such that 2*t*u + 2*t*v + 2*u*v <= n, where t,u,v are positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 9, 9, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 24, 24, 27, 27, 27, 27, 27, 27, 27, 27, 30, 30, 32, 32, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 40
Offset: 1

Views

Author

Gleb Ivanov, Jul 20 2022

Keywords

Comments

The largest volume of a rectangular cuboid with a surface area less than or equal to n.

Crossrefs

Cf. A008642.

Programs

  • Python
    for k in range(1, 200):
        max_v = 0
        for a in range(1, k):
            for b in range(1, a+1):
                for c in range(1, b+1):
                    if 2*a*b + 2*a*c + 2*b*c <= k and a*b*c > max_v:
                        max_v = a*b*c
        print(max_v, end = ', ')

A345206 Maximum number of unit cubes that can be fully enclosed in n unit cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 14, 14, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 22, 22, 24, 24, 27
Offset: 8

Views

Author

Abraham Maxfield, Jun 11 2021

Keywords

Comments

Cubes are assumed to be aligned in a 3D grid. Cubes with an exposed edge or corner are not considered enclosed.
The Moore neighborhood of a cube in a 3-D grid consists of the 26 that share a face, an edge, or a vertex with it. - N. J. A. Sloane, Jul 12 2021

Examples

			a(26) = 1 as the number of neighbors in Moore's neighborhood is 26 in 3D.
		

Crossrefs

Cf. A345205. 3D equivalent to A008642.

A359979 Irregular table T(n,k), n >= 0 and k >= 0, read by rows with T(n + 3*k,k) = A008619(n).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 3, 2, 4, 2, 1, 4, 3, 1, 5, 3, 2, 5, 4, 2, 1, 6, 4, 3, 1, 6, 4, 3, 2, 7, 5, 4, 2, 1, 7, 6, 4, 3, 1, 8, 6, 5, 3, 2, 8, 7, 5, 4, 2, 1, 9, 7, 6, 4, 3, 1, 9, 8, 6, 5, 3, 2, 10, 8, 7, 5, 4, 2, 1, 10, 9, 7, 6, 4, 3, 1, 11, 9, 8, 6, 5, 3, 2
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2023

Keywords

Comments

A008620(n) is the length of the n-th row.

Examples

			Table: n >= 0, k >= 0.
  1;
  1;
  2;
  2, 1;
  3, 1;
  3, 2;
  4, 2, 1;
  4, 3, 1;
  5, 3, 2;
  5, 4, 2, 1;
  6, 4, 3, 1;
  6, 5, 3, 2;
  7, 5, 4, 2, 1;
  7, 6, 4, 3, 1;
  8, 6, 5, 3, 2;
  8, 7, 5, 4, 2, 1;
  9, 7, 6, 4, 3, 1;
  9, 8, 6, 5, 3, 2;
  ....
		

Crossrefs

Formula

Sum_{k >= 0} T(n,k) = A001399(n).

A373612 Size of the largest polyiamond that can be enclosed in n cells on a triangular lattice.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 6, 6, 6, 7, 7, 10
Offset: 6

Views

Author

Abraham Maxfield, Jun 10 2024

Keywords

Examples

			A single triangular face takes 12 triangles to completely enclose so a(12) = 1.
		

Crossrefs

Cf. A290648. A257594 is the hexagonal tiling equivalent. A008642 is the square tiling equivalent (if prepended with 7 zeros).
Previous Showing 11-20 of 20 results.