cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 112 results. Next

A306454 a(n) = A261327(n)/A013946(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 169, 1, 1, 1, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 289, 1, 1, 1, 1, 1, 841, 1, 1, 1, 25, 1, 1, 25, 1, 1, 1
Offset: 1

Views

Author

Paul Curtz, Feb 16 2019

Keywords

Comments

Are all terms odd squares?
b(n) = A013946(n)*A261327(n) = 25, 4, 169, 25, 841, 100, 2809, 289, 7225, 676, 625, ... . Are all terms squares?
a(n) = A008833(n^2+4) if n is odd and A008833((n^2+4)/4) if n is even, so a(n) is always an odd square. - Jianing Song, Feb 27 2019
Are the square roots only primes?
The sequence of period 4: repeat [25, 1, 1, 25] appears apparently every 25 terms.
From Robert Israel, Mar 20 2019: (Start)
The first term whose square root is not 1 or a prime is a(261) = 25^2.
a(11+25*k) is divisible by 25. The first term where a(11+25*k) > 25 is a(261)=a(11+25*10)=625.
The first term where a(12+25*k) > 1 is a(1212)=a(12+25*48)=169.
The first term where a(13+25*k) > 1 is a(213)=a(13+25*8)=289.
a(14+25*k) is divisible by 25. The first term where a(14+25*k) > 25 is a(364)=a(14+25*14)=625.
All prime factors of members of the sequence are in A002144. For any p in A002144, there is k with 1 <= k < p^2/2 such that p^2 | a(n) if and only if n == k or -k (mod p^2). (End)

Examples

			A261327(n) = 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, ... .
A013946(n) = 5, 2, 13, 5, 29, 10, 53, 17, 85, 26,   5, 37, 173,  2, ... .
		

Crossrefs

Programs

A357684 The squarefree part (A007913) of numbers whose squarefree part is a unitary divisor (A335275).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 1, 26, 7, 29, 30, 31, 33, 34, 35, 1, 37, 38, 39, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 55, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 73, 74, 3, 19, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := If[AllTrue[(f = FactorInteger[n])[[;; , 2]], # == 1 || EvenQ[#] &], i = Position[f[[;; , 2]], 1] // Flatten; Times @@ f[[i, 1]], Nothing]; Array[s, 100]
  • PARI
    s(n) = {my(f = factor(n), ans = 1); for(k = 1, #f~, if(f[k,2] > 1 && f[k,2]%2, ans = 0)); if(ans, ans = prod(k = 1, #f~, if(f[k,2] == 1, f[k,1], 1))) };
    for(n = 1, 100, if(s(n) > 0, print1(s(n), ", ")))

Formula

a(n) = A007913(A335275(n)).
a(n) = 1 iff A335275(n) is a square (A000290).
a(n) = A335275(n) iff A335275(n) is squarefree (A005117).
Sum_{k, a(k) <= x} ~ c*x^2 + o(x^2), where c = (3/Pi^2) * Sum_{k>=1} f(k)/k^4 = 0.32103327852028541131..., and f(k) = Product_{p prime | k} (p/(p+1)) (Jakimczuk, 2017).
Sum_{k=1..n} a(k) ~ c'*x^2 + o(x^2), where c' = c / (A065465)^2 = 0.41313480468422995583... .

A362412 The number of prime factors of the square root of the largest square dividing n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2023

Keywords

Comments

First differs from A366073 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(factor(n)[, 2]\2);

Formula

a(n) = A001222(A000188(n)).
a(n) = A001222(A008833(n))/2.
Additive with a(p^e) = floor(e/2) = A004526(e).
a(n) >= 0, with equality if and only if n is squarefree (A005117).
a(n) <= A001222(n)/2, with equality if and only if n is square (A000290).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^2-1) = 0.551693... (A154945).
a(n) = (A001222(n) - A162642(n))/2. - Ridouane Oudra, Apr 19 2025

A365837 Largest proper square divisor of n, for n >= 2; a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 1, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 16, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 16, 9, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 16, 1, 49, 9, 25
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 17 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F, t;
      if issqr(n) then
        n/min(numtheory:-factorset(n))^2
      else
        F:= ifactors(n)[2];
        mul(t[1]^(2*floor(t[2]/2)),t=F)
      fi
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Nov 20 2023
  • Mathematica
    Join[{1}, Table[Last[Select[Divisors[n], # < n && IntegerQ[Sqrt[#]]  &]], {n, 2, 100}]]
    f[p_, e_] := p^(2*Floor[e/2]); a[n_] := Module[{fct = FactorInteger[n]}, Times @@ f @@@ fct/If[AllTrue[fct[[;; , 2]], EvenQ], fct[[1, 1]]^2, 1]]; Array[a, 100] (* Amiram Eldar, Oct 19 2023 *)
  • PARI
    a(n) = if (n==1, 1, my(d=divisors(n)); vecmax(select(issquare, Vec(d, #d-1)))); \\ Michel Marcus, Oct 17 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A365837(n):
        if n<=1: return 1
        f = factorint(n)
        return prod(p**(e&-2) for p, e in f.items())//(min(f)**2 if all(e&1^1 for e in f.values()) else 1) # Chai Wah Wu, Oct 20 2023

A380168 Nonsquares whose square part is greater than their squarefree part.

Original entry on oeis.org

8, 12, 18, 27, 32, 45, 48, 50, 54, 63, 72, 75, 80, 96, 98, 108, 112, 125, 128, 147, 150, 160, 162, 175, 176, 180, 192, 200, 208, 216, 224, 240, 242, 243, 245, 250, 252, 275, 288, 294, 300, 320, 325, 338, 343, 350, 360, 363, 375, 384, 392, 396, 405, 425, 432, 448
Offset: 1

Views

Author

Felix Huber, Jan 25 2025

Keywords

Comments

Numbers A000037(k) for which A007913(A000037(k)) < A008833(A000037(k)).

Examples

			8 is in the sequence because its square part is 4 and its squarefree part is 2.
150 is in the sequence because its square part is 25 and its squarefree part is 6.
		

Crossrefs

Programs

  • Maple
    A380168:=proc(n)
        option remember;
        local a,r,i;
        if n=1 then
            8
        else
            for a from procname(n-1)+1 do
                r:=1;
                for i in ifactors(a)[2] do
                    if is(i[2],odd) then
                        r:=r*i[1]
                    fi
                od;
                if r>1 and rA380168(n),n=1..56);
  • PARI
    select(x->(x>sqr(core(x))), select(x->(!issquare(x)), [1..500])) \\ Michel Marcus, Feb 10 2025

A056629 a(n) = A034444(A056627(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 4, 4, 8, 8, 8, 8, 16, 8, 8, 8, 8, 8, 16, 8, 16, 16, 16, 16, 32, 32, 64, 64, 64, 64, 64, 32, 64, 64, 64, 64, 128, 64, 64, 64, 64, 64, 128, 128, 256, 256, 256, 256, 256, 128, 256, 256, 256, 256, 256, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name, "Number of unitary square divisors of n!." was incorrect. See A375187 for the correct sequence with this name. - Amiram Eldar, Aug 03 2024

Examples

			a(10) = A034444(A056627(10)) = A034444(720) = 8.
		

Crossrefs

Programs

  • Mathematica
    A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[2^(PrimeNu[Sqrt[A008833[n!]]/A055229[n!]]), {n, 1, 50}] (* G. C. Greubel, May 19 2017 *)
    f[p_, 1] := 1; f[p_, e_] := If[EvenQ[e], p^(e/2), p^((e-3)/2)]; a[1] = 1; a[n_] := 2^PrimeNu[Times @@ f @@@ FactorInteger[n!]]; Array[a, 66] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); 2^omega(prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^if(f[i, 2]%2, (f[i, 2]-3)/2, f[i, 2]/2))));} \\ Amiram Eldar, Aug 03 2024

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Aug 03 2024

A056630 a(n) = A055993(n) - A034444(A056627(n)).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 4, 8, 22, 22, 28, 28, 56, 88, 120, 120, 172, 172, 284, 292, 584, 584, 848, 1136, 2272, 2656, 4304, 4304, 5312, 5312, 6080, 6112, 12992, 16256, 19376, 19376, 38752, 43136, 47936, 47936, 63936, 63936, 100672, 132928, 278528, 278528
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name, "Number of non-unitary square divisors of n!." was incorrect. See A375188 for the correct sequence with this name. - Amiram Eldar, Aug 03 2024

Examples

			example: a(10) = A055993(10) - A034444(A056627(10)) = 30 - A034444(720) = 30 - 8 = 22.
		

Crossrefs

Programs

  • Mathematica
    A046951[n_] := Length[Select[Divisors[n], IntegerQ[Sqrt[#]] &]]; A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[A046951[n!] - 2^(PrimeNu[Sqrt[A008833[n!]]/A055229[n!]]), {n,1,50}] (* G. C. Greubel, May 20 2017 *)
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, 1] := 1; f2[p_, e_] := If[EvenQ[e], p^(e/2), p^((e-3)/2)]; ; a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - 2^PrimeNu[Times @@ f2 @@@ fct]; Array[a, 60] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, 1 + f[i, 2]\2) - 2^omega(prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^if(f[i, 2]%2, (f[i, 2]-3)/2, f[i, 2]/2))));} \\ Amiram Eldar, Aug 03 2024

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Aug 03 2024

A056648 a(n) = A034444(A056647(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 4, 2, 4, 2, 2, 4, 2, 2, 1, 2, 2, 4, 4, 2, 2, 4, 2, 1, 2, 1, 2, 4, 4, 8, 8, 4, 4, 2, 2, 4, 2, 1, 1, 2, 1, 2, 2, 2, 4, 4, 2, 4, 2, 4, 4, 2, 1, 2, 2, 1, 4, 2, 4, 8, 2, 4, 8, 4, 2, 1, 2, 4, 8, 4, 2, 4, 4, 8, 4, 4, 8, 16, 8, 4, 4, 2, 1, 2, 2, 1
Offset: 1

Views

Author

Labos Elemer, Aug 09 2000

Keywords

Comments

Previous name, "Number of unitary square divisors of central binomial coefficient", was incorrect. See A376555 for the correct sequence with this name. - Amiram Eldar, Sep 28 2024

Examples

			a(28) = A034444(A056647(28)) = A034444(25) = 2.
		

Crossrefs

Programs

  • Mathematica
    A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[2^(PrimeNu[ Sqrt[A008833[Binomial[n, Floor[n/2]]]]/A055229[Binomial[n, Floor[n/2]]]]), {n, 1, 25}] (* G. C. Greubel, May 20 2017 *)

Formula

a(n) = 2^r, where r = A001221(A000188(A001405(n))/A055229(A001405(n))).

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Sep 28 2024

A056649 a(n) = A056061(n) - A034444(A056647(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 4, 6, 2, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 6, 8, 0, 0, 0, 4, 4, 6, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 4, 4, 0, 0, 4, 8, 2, 3, 6, 8, 4, 8, 2, 2, 4, 4, 8, 8, 0, 0, 0, 4, 2, 4, 3, 4, 2, 3, 4
Offset: 1

Views

Author

Labos Elemer, Aug 09 2000

Keywords

Comments

Previous name, "Number of non-unitary square divisors of central binomial coefficient", was incorrect. See A376556 for the correct sequence with this name. - Amiram Eldar, Sep 28 2024

Examples

			a(28) = A056061(28) - A034444(A056647(28)) = A056061(28) - A034444(25) = 8 - 2 = 6.
		

Crossrefs

Programs

  • Mathematica
    A056061[n_] := Count[Divisors@Binomial[n, Floor[n/2]], d_ /; IntegerQ@Sqrt@d]; A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]];
    Table[A056061[n] - 2^(PrimeNu[Sqrt[A008833[Binomial[n, Floor[n/2]]]]/ A055229[Binomial[n, Floor[n/2]]]]), {n, 1, 15}] (* G. C. Greubel, May 20 2017 *)

Formula

a(n) = A056061(n) - 2^r, where r = A001221(A000188(A001405(n))/A055229(A001405(n))).

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Sep 28 2024

A175384 A positive integer k is included if the largest square dividing k is not equal to the largest square that, when written in binary, occurs as a substring in binary k.

Original entry on oeis.org

17, 19, 27, 33, 34, 35, 37, 38, 39, 41, 45, 51, 54, 57, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 89, 90, 97, 99, 101, 102, 103, 105, 108, 113, 114, 115, 117, 125, 126, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 145, 146
Offset: 1

Views

Author

Leroy Quet, Apr 24 2010

Keywords

Comments

A008833(a(n)) does not equal A162400(a(n)).

Examples

			The largest square dividing 17 is 1. However, 17 in binary is 10001; and the largest square occurring, in its binary representation, within 10001 is 4 (100 in binary). Since 1 does not equal 4, then 17 is in this sequence.
		

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Aug 31 2010: (Start)
    A008833 := proc(n) local b; b := floor(sqrt(n)) ; while b >= 1 do if n mod (b^2) = 0 then return b^2 ; end if; b := b-1 ; end do: end proc:
    A162400 := proc(n) local b,nbin,a; a := 1 ; nbin := convert(n,base,2) ; for b from 1 to floor(sqrt(n)) do convert(b^2,base,2) ; if verify(%,nbin,'sublist') then a := b^2 ; end if; end do: a ; end proc:
    isA162400 := proc(n) A008833(n) <> A162400(n) ; end proc:
    for n from 1 to 300 do if isA162400(n) then printf("%d,",n) ; end if; end do: (End)

Extensions

More terms from R. J. Mathar, Aug 31 2010
Previous Showing 101-110 of 112 results. Next