cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A056551 Smallest cube divisible by n divided by largest cube which divides n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 1, 27, 1000, 1331, 216, 2197, 2744, 3375, 8, 4913, 216, 6859, 1000, 9261, 10648, 12167, 27, 125, 17576, 1, 2744, 24389, 27000, 29791, 8, 35937, 39304, 42875, 216, 50653, 54872, 59319, 125, 68921, 74088, 79507, 10648
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(16) = 8 since smallest cube divisible by 16 is 64 and smallest cube which divides 16 is 8 and 64/8 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[Divisible[e, 3], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^3; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%3, f[i,1], 1))^3; } \\ Amiram Eldar, Oct 28 2022

Formula

a(n) = A053149(n)/A008834(n) = A048798(n)*A050985(n) = A056552(n)^3.
From Amiram Eldar, Oct 28 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 3, and a(p^e) = p^3 otherwise.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(12)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013670 * A330596 / (4*A002117) = 0.1557163105... . (End)
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(2*s-3)). - Amiram Eldar, Sep 16 2023

A295657 Multiplicative with a(p^e) = p^floor((e-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> p^Floor[(e - 1)/2]] &, 105] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^floor((f[i,2]-1)/2));} \\ Amiram Eldar, Nov 30 2022

Formula

a(1) = 1; for n > 1, a(n) = A020639(n)^A004526(A067029(n)-1) * a(A028234(n)).
a(n) = A000188(A003557(n)).
a(n) = 1 iff A212793(n) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15/Pi^2 = 1.519817... (A082020). - Amiram Eldar, Nov 30 2022

A368170 The largest cubefull exponentially odd divisor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 27, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2023

Keywords

Comments

First differs from A008834 at n = 32, and from A366906 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 1, If[EvenQ[e], p^(e-1), p^e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2] <= 2, 1, if(!(f[i,2]%2), f[i,1]^(f[i, 2]-1), f[i, 1]^f[i, 2])))};

Formula

Multiplicative with a(p^e) = 1 if e <= 2, a(p^e) = p^e if e is odd and e > 1, and p^(e-1) otherwise.
a(n) = n/A368171(n).
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= n, with equality if and only if n is in A335988.

A277780 a(n) is the least k > n such that n*k^2 is a cube.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 27, 72, 80, 88, 96, 104, 112, 120, 54, 136, 144, 152, 160, 168, 176, 184, 81, 200, 208, 64, 224, 232, 240, 248, 108, 264, 272, 280, 288, 296, 304, 312, 135, 328, 336, 344, 352, 360, 368, 376, 162, 392, 400, 408, 416, 424, 128, 440
Offset: 1

Views

Author

Peter Kagey, Oct 30 2016

Keywords

Comments

a(n) is bounded above by 8*n (A008590) because n*(8*n)^2 = (4*n)^3.
If and only if n is cubefree, a(n) = 8n. - David A. Corneth, Nov 01 2016
Theorem: If n = q*m^3 with q cubefree then k = q*(m+1)^3. - Hartmut F. W. Hoft, Nov 02 2016
Proof: let q have u distinct prime divisors p_i. Then q = Product_{i=1..u}(p_i^e_i) where e_i > 0 since p_i|q and e_i < 3 since q is cubefree. Therefore, e_i = 1 or e_i = 2. This yields q|k, i.e., q*t = k. Now for n*k^2 = q*m^3*q^2*t^2 = (q*m)^3 * t^2 to be a cube, t must be a cube. Now, k > n, so q*t/(q*m^3) = t/m^3. The least cube > m^3 is (m+1)^3 so k = q*(m+1)^3 which completes the proof. - David A. Corneth, Nov 03 2016

Examples

			a(24) = 81  because 24 *  81^2 =  54^3;
a(25) = 200 because 25 * 200^2 = 100^3;
a(26) = 208 because 26 * 208^2 = 104^3;
a(27) = 64  because 27 *  64^2 =  48^3.
The cubefree part of 144 is 18. The cubefull part of 144 is 8 = 2^3. Therefore, a(144) = 18 * 3^3 = 486. - _David A. Corneth_, Nov 01 2016
		

Crossrefs

Programs

  • Mathematica
    Table[k = n + 1; While[! IntegerQ[(n k^2)^(1/3)], k++]; k, {n, 55}] (* Michael De Vlieger, Nov 04 2016 *)
  • PARI
    a(n) = {my(k = n+1); while (!ispower(n*k^2, 3), k++); k;} \\ Michel Marcus, Oct 31 2016
    
  • PARI
    a(n) = {my(f = factor(n)); f[, 2] = f[, 2]%3; f=factorback(f); n = sqrtnint(n/f,3); (n+1)^3 * f} \\ David A. Corneth, Nov 01 2016

Formula

a(n) = A050985(n) * A000578(1+A048766(A008834(n))). [Formula given in comments expressed with A-numbers] - Antti Karttunen, Nov 02 2016.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + (3*zeta(4) + 3*zeta(5) + zeta(6))/zeta(3) = 7.13539675963975495073... . - Amiram Eldar, Feb 17 2024

A365487 The number of divisors of the largest cube dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of divisors of the cube root of the largest cube dividing n, A053150(n), is A061704(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 3*Floor[e/3] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 3*(x\3) + 1, factor(n)[, 2]));

Formula

a(n) = A000005(A008834(n)).
Multiplicative with a(p^e) = 3*floor(e/3) + 1.
a(n) = 1 if and only if n is cubefree (A004709).
a(n) <= A000005(n) with equality if and only if n is a cube (A000578).
Dirichlet g.f.: zeta(s) * zeta(3*s) * Product_{p prime} (1 + 2/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3) * Product_{p prime} (1 + 2/p^3) = 1.6552343865608... .

A366123 The number of prime factors of the cube root of the largest cube dividing n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2023

Keywords

Comments

First differs from A295659 at n = 64.
The number of distinct prime factors of the cube root of the largest cube dividing n is A295659(n).

Crossrefs

Cf. A061704 (number of divisors), A333843 (sum of divisors).

Programs

  • Mathematica
    f[p_, e_] := Floor[e/3]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> x\3, factor(n)[, 2]));

Formula

a(n) = A001222(A053150(n)).
a(n) = A001222(A008834(n))/3.
Additive with a(p^e) = floor(e/3) = A002264(e).
a(n) >= 0, with equality if and only if n is cubefree (A004709).
a(n) <= A001222(n)/3, with equality if and only if n is a positive cube (A000578 \ {0}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^3-1) = 0.194118... (A286229).
Previous Showing 11-16 of 16 results.