A320452 Number of possible states when placing n tokens of 2 alternating types on 2 piles.
1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2030, 3732, 6858, 12600, 23144, 42504, 78048, 143296, 263068, 482904, 886392, 1626912, 2985943, 5480012, 10056946, 18456056, 33868851, 62151788, 114050884, 209284710, 384034660, 704690938, 1293071688, 2372700708
Offset: 0
Keywords
Examples
With alternating symbols A and B on two piles (starting with A), the following states emerge after placing 4 symbols in all 2^4 possible ways: B B A A B B B B B B A A B B B BB A AB BA A A AB BA A BB B B B A_ AB AA AA AB AB AB AB BA BA BA BA AA AA BA _A All states are different, except the 13th state is a duplicate of the 4th. Hence a(4)=15.
Links
- Martin Fuller, Table of n, a(n) for n = 0..40
Crossrefs
For 2 token types on 3 piles, see A320731.
Programs
-
Python
def fill(patterns, state_in, ply_nr, n_plies, n_players, n_stacks): if ply_nr>=n_plies: patterns.add(tuple(state_in)) else: symbol=chr(ord('A')+ply_nr%n_players) for st in range(n_stacks): state_out=list(state_in) state_out[st]+=symbol fill(patterns, state_out, ply_nr+1, n_plies, n_players, n_stacks) def A320452(n): n_plies, n_players, n_stacks = n, 2, 2 patterns=set() state=[""]*n_stacks fill(patterns, state, 0, n_plies, n_players, n_stacks) return len(patterns)
Extensions
a(33) onwards from Martin Fuller, Apr 09 2025
Comments