A013768
a(n) = 21^(3*n + 1).
Original entry on oeis.org
21, 194481, 1801088541, 16679880978201, 154472377739119461, 1430568690241985328321, 13248496640331026125580781, 122694327386105632949003612841, 1136272165922724266740722458520501, 10523016528610349434285830688358359761
Offset: 0
A013898
a(n) = 21^(5*n + 1).
Original entry on oeis.org
21, 85766121, 350277500542221, 1430568690241985328321, 5842587018385982521381124421, 23861715484377209601555171628930521, 97453656071460446110921078004886769746621, 398010574215107679422058885600836061208944572721, 1625515384162495488635310116741260158419511738394408821
Offset: 0
A013899
a(n) = 21^(5*n + 2).
Original entry on oeis.org
441, 1801088541, 7355827511386641, 30041942495081691894741, 122694327386105632949003612841, 501096025171921401632658604207540941, 2046526777500669368329342638102622164679041, 8358222058517261267863236597617557285387836027141
Offset: 0
A013900
a(n) = 21^(5*n + 3).
Original entry on oeis.org
9261, 37822859361, 154472377739119461, 630880792396715529789561, 2576580875108218291929075869661, 10523016528610349434285830688358359761, 42977062327514056734916195400155065458259861, 175522663228862486625127968549968702993144556569961
Offset: 0
A013901
a(n) = 21^(5*n + 4).
Original entry on oeis.org
194481, 794280046581, 3243919932521508681, 13248496640331026125580781, 54108198377272584130510593262881, 220983347100817338120002444455525554981, 902518308877795191433240103403256374623457081, 3685975927806112219127687339549342762856035687969181
Offset: 0
A017968
Powers of sqrt(21) rounded to nearest integer.
Original entry on oeis.org
1, 5, 21, 96, 441, 2021, 9261, 42439, 194481, 891224, 4084101, 18715702, 85766121, 393029742, 1801088541, 8253624572, 37822859361, 173326116021, 794280046581, 3639848436450, 16679880978201, 76436817165460, 350277500542221, 1605173160474663, 7355827511386641
Offset: 0
Bisection gives
A009965 (even part).
A038335
Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*9^j.
Original entry on oeis.org
1, 12, 9, 144, 216, 81, 1728, 3888, 2916, 729, 20736, 62208, 69984, 34992, 6561, 248832, 933120, 1399680, 1049760, 393660, 59049, 2985984, 13436928, 25194240, 25194240, 14171760, 4251528, 531441, 35831808, 188116992, 423263232
Offset: 0
1
12 9
144 216 81
1728 3888 2916 729
20736 62208 69984 34992 6561
248832 933120 1399680 1049760 393660 59049
2985984 13436928 25194240 25194240 14171760 4251528 531441
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
-
A038335 := proc(i,j)
binomial(i,j)*12^(i-j)*9^j ;
end proc: # R. J. Mathar, Nov 22 2022
-
Flatten[Table[Binomial[i,j]12^(i-j) 9^j,{i,0,10},{j,0,i}]] (* Harvey P. Dale, Oct 17 2013 *)
A159705
Numerator of Hermite(n, 1/21).
Original entry on oeis.org
1, 2, -878, -5284, 2312620, 23267192, -10152119816, -143434219696, 62392319304592, 1136856492784160, -492996517654282976, -11013067301664857152, 4761026079678523718848, 126084356480177895534464, -54337756316633597169242240, -1665565146450503848398045952
Offset: 0
Numerator of 1, 2/21, -878/441, -5284/9261, 2312620/194481, 23267192/4084101, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(2/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
-
A159705 := proc(n)
orthopoly[H](n,1/21) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 17 2014
-
Numerator[Table[HermiteH[n, 1/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
-
a(n)=numerator(polhermite(n,1/21)) \\ Charles R Greathouse IV, Jan 29 2016
A159706
Numerator of Hermite(n, 2/21).
Original entry on oeis.org
1, 4, -866, -10520, 2249356, 46111984, -9735212024, -282965467424, 58973337166480, 2232497686809664, -459200359680279584, -21527431036382354816, 4369052165472543104704, 245322538750961015791360, -49114261974304335175370624, -3225699756394083963693195776
Offset: 0
Numerator of 1, 4/21, -866/441, -10520/9261, 2249356/194481, 46111984/4084101, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(4/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 22 2018
-
A159706 := proc(n)
orthopoly[H](n,2/21) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 17 2014
-
Numerator[Table[HermiteH[n, 2/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
-
a(n)=numerator(polhermite(n,2/21)) \\ Charles R Greathouse IV, Jan 29 2016
A159707
Numerator of Hermite(n, 4/21).
Original entry on oeis.org
1, 8, -818, -20656, 1999180, 88867808, -8105441336, -535131970624, 45761939043472, 4141986697070720, -330122378550514976, -39173301696567870208, 2889460903124553335488, 437725912381470764965376, -29628751416174362424982400, -5642069577415795905192322048
Offset: 0
Numerator of 1, 8/21, -818/441, -20656/9261, 1999180/194481, 88867808/4084101, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(8/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 22 2018
-
A159707 := proc(n)
orthopoly[H](n,4/21) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 17 2014
-
Numerator[Table[HermiteH[n, 4/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
-
a(n)=numerator(polhermite(n,4/21)) \\ Charles R Greathouse IV, Jan 29 2016
Comments