cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A166470 a(n) = 2^F(n+1)*3^F(n), where F(n) is the n-th Fibonacci number, A000045(n).

Original entry on oeis.org

2, 6, 12, 72, 864, 62208, 53747712, 3343537668096, 179707499645975396352, 600858794305667322270155425185792, 107978831564966913814384922944738457859243070439030784
Offset: 0

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Crossrefs

Subsequence of A025610 and hence of A003586 and A025487.

Programs

  • Magma
    [2^Fibonacci(n+1)*3^Fibonacci(n): n in [0..14]]; // G. C. Greubel, Jul 29 2024
    
  • Mathematica
    3^First[#] 2^Last[#]&/@Partition[Fibonacci[Range[0,12]],2,1] (* Harvey P. Dale, Aug 20 2012 *)
  • PARI
    a(n)=2^fibonacci(n+1)*3^fibonacci(n) \\ Charles R Greathouse IV, Sep 19 2022
    
  • SageMath
    [2^fibonacci(n+1)*3^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024

Formula

a(n) = A000301(n+1)*A010098(n).
For n > 1, a(n) = a(n-1)*a(n-2).
For m > 1, n > 1, A166469(A002110(m)*(a(n)^k)/12) = k*Fibonacci(m+n).
A166469(a(n)) = Fibonacci(n+2) + 1 = A001611(n+2).
a(n) = 2 * A174666(n+1). - Alois P. Heinz, Sep 16 2022
a(n) = 2^(Fibonacci(n+1) + c*Fibonacci(n)), with c=log_2(3). Cf. A000301 (c=1) & A010098 (c=2). - Andrea Pinos, Sep 29 2022
a(n) = A115033(2*n+1). - David Radcliffe, May 31 2025

Extensions

Typo corrected by Matthew Vandermast, Nov 07 2009

A076776 a(0) = 1, a(1) = 2, a(2) = 5; for n > 2, a(n) = a(n-1)*a(n-2).

Original entry on oeis.org

1, 2, 5, 10, 50, 500, 25000, 12500000, 312500000000, 3906250000000000000, 1220703125000000000000000000000, 4768371582031250000000000000000000000000000000000
Offset: 0

Views

Author

Emily Shields (emilyshields_2001(AT)hotmail.com), Nov 14 2002

Keywords

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):A076776 := n->2^fibonacci(n-2)*5^fibonacci(n-1);
  • Mathematica
    nxt[{a_,b_}]:={b,a*b}; Join[{1},NestList[nxt,{2,5},15][[All,1]]] (* Harvey P. Dale, Jun 07 2021 *)

Formula

a(n) = 2^fibonacci(n-2)*5^fibonacci(n-1)for n>=2, fibonacci(n)=A000045(n). - Vladeta Jovovic and Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 16 2002

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 16 2002
Previous Showing 11-12 of 12 results.