cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A384287 Decimal expansion of the volume of a square orthobicupola with unit edge.

Original entry on oeis.org

3, 8, 8, 5, 6, 1, 8, 0, 8, 3, 1, 6, 4, 1, 2, 6, 7, 3, 1, 7, 3, 5, 5, 8, 4, 9, 6, 5, 6, 1, 2, 9, 3, 0, 7, 7, 1, 4, 2, 6, 2, 2, 9, 1, 6, 7, 1, 6, 9, 2, 6, 4, 0, 9, 7, 5, 6, 8, 9, 0, 6, 3, 1, 7, 3, 2, 0, 9, 7, 6, 6, 3, 7, 9, 4, 9, 4, 7, 6, 0, 5, 1, 8, 0, 0, 5, 1, 6, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Jun 05 2025

Keywords

Comments

The square orthobicupola is Johnson solid J_28.
Also the volume of a square gyrobicupola (Johnson solid J_29) with unit edge.

Examples

			3.885618083164126731735584965612930771426229167169...
		

Crossrefs

Cf. A010469 (surface area - 10).

Programs

  • Mathematica
    First[RealDigits[2 + Sqrt[32]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J28", "Volume"], 10, 100]]

Formula

Equals 2 + (4/3)*sqrt(2) = 2 + (4/3)*A002193 = 2 + A010487/3.
Equals the largest root of 9*x^2 - 36*x + 4.

A385535 Decimal expansion of the surface area of a biaugmented pentagonal prism with unit edge.

Original entry on oeis.org

9, 9, 0, 5, 0, 5, 6, 4, 1, 6, 3, 1, 5, 6, 8, 8, 4, 3, 2, 5, 7, 2, 9, 1, 6, 6, 3, 7, 7, 8, 8, 9, 6, 3, 9, 3, 2, 7, 0, 0, 3, 5, 8, 8, 4, 7, 6, 4, 1, 1, 5, 7, 9, 1, 4, 5, 2, 5, 8, 0, 3, 3, 7, 2, 9, 5, 1, 6, 0, 4, 0, 1, 8, 2, 3, 5, 5, 3, 2, 5, 3, 6, 8, 2, 7, 1, 7, 4, 8, 5
Offset: 1

Views

Author

Paolo Xausa, Jul 03 2025

Keywords

Comments

The biaugmented pentagonal prism is Johnson solid J_53.

Examples

			9.905056416315688432572916637788963932700358847641...
		

Crossrefs

Cf. A385534 (volume).

Programs

  • Mathematica
    First[RealDigits[3 + Sqrt[12] + Sqrt[25/4 + 5*Sqrt[5]/2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J53", "SurfaceArea"], 10, 100]]

Formula

Equals 3 + 2*sqrt(3) + sqrt(25/4 + 5*sqrt(5)/2) = 3 + A010469 + sqrt(25/4 + 5*A002163/2).
Equals the largest root of 256*x^8 - 6144*x^7 + 45824*x^6 - 50688*x^5 - 729376*x^4 + 2504064*x^3 - 583184*x^2 - 4746912*x + 1628761.

A131266 Decimal expansion of 2*sqrt(3)*log(2)/Pi.

Original entry on oeis.org

7, 6, 4, 3, 0, 4, 1, 3, 8, 8, 4, 5, 6, 8, 8, 1, 9, 7, 2, 0, 5, 6, 2, 4, 9, 9, 9, 0, 4, 0, 6, 0, 0, 0, 1, 6, 9, 0, 4, 5, 5, 6, 2, 3, 7, 1, 1, 5, 0, 4, 9, 0, 6, 1, 3, 0, 3, 9, 2, 5, 7, 6, 6, 7, 8, 0, 8, 6, 1, 4, 1, 7, 1, 3, 2, 9, 2, 4, 4, 5, 1, 7, 1, 3, 8, 1, 1, 5, 2, 8, 7, 4, 9, 6, 7, 8, 8, 1, 2, 8, 7, 7, 5, 3, 4
Offset: 0

Views

Author

R. J. Mathar, Sep 28 2007

Keywords

Comments

Also: a constant describing the peak location of the density of states of the minimal difference partition problem in the fermionic case [Comtet et al.].

Examples

			0.76430413884568819720562499904060001690455623711504906130392...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[3] Log[4]/Pi, 10, 111][[1]] (* Robert G. Wilson v, Nov 08 2015 *)
  • PARI
    print(2*sqrt(3)*log(2)/Pi);
    
  • PARI
    default(realprecision, 60);
    eval(vecextract(Vec(Str(2*sqrt(3)*log(2)/Pi)), "3..-2"))  \\ Gheorghe Coserea, Nov 07 2015

Formula

Equals lim A257639(n)/sqrt(n) when n tends to infinity.

Extensions

Leading zero removed by R. J. Mathar, Feb 06 2009

A386461 Decimal expansion of the surface area of a biaugmented truncated cube with unit edges.

Original entry on oeis.org

3, 6, 2, 4, 1, 9, 1, 1, 7, 2, 9, 2, 6, 0, 2, 6, 9, 5, 6, 4, 5, 2, 3, 2, 9, 5, 1, 5, 9, 7, 0, 1, 0, 7, 4, 0, 9, 6, 3, 2, 8, 5, 9, 6, 0, 1, 8, 2, 5, 7, 1, 0, 7, 0, 9, 7, 6, 3, 6, 6, 6, 5, 8, 2, 1, 7, 3, 3, 5, 9, 1, 8, 9, 5, 3, 3, 2, 0, 5, 6, 4, 5, 9, 1, 2, 7, 6, 8, 5, 0
Offset: 2

Views

Author

Paolo Xausa, Jul 23 2025

Keywords

Comments

The biaugmented truncated cube is Johnson solid J_67.

Examples

			36.241911729260269564523295159701074096328596018257...
		

Crossrefs

Cf. A010524 (volume - 9).

Programs

  • Mathematica
    First[RealDigits[18 + 8*Sqrt[2] + Sqrt[48], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J67", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(9 + 4*sqrt(2) + 2*sqrt(3)) = 2*(9 + A010487 + A010469) = 18 + A377342 + A010502.
Equals the largest root of x^4 - 72*x^3 + 1592*x^2 - 10656*x - 2672.

A017940 Powers of sqrt(12) rounded down.

Original entry on oeis.org

1, 3, 12, 41, 144, 498, 1728, 5985, 20736, 71831, 248832, 861979, 2985984, 10343751, 35831808, 124125023, 429981696, 1489500287, 5159780352, 17874003451, 61917364224, 214488041413, 743008370688
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010469 (sqrt(12)).

Programs

Formula

a(n) = floor(sqrt(12^n)). - Vincenzo Librandi, Jun 24 2011

A171541 Decimal expansion of 2*sqrt(3/35).

Original entry on oeis.org

5, 8, 5, 5, 4, 0, 0, 4, 3, 7, 6, 9, 1, 1, 9, 9, 0, 7, 6, 1, 2, 6, 3, 0, 7, 8, 1, 7, 4, 4, 0, 6, 0, 1, 1, 3, 7, 5, 6, 2, 8, 7, 5, 8, 0, 7, 6, 8, 8, 4, 7, 5, 9, 5, 9, 7, 3, 8, 2, 7, 3, 4, 2, 8, 5, 0, 8, 7, 7, 0, 2, 7, 7, 5, 4, 5, 9, 1, 6, 6, 1, 3, 1, 0, 1, 2, 7, 5, 2, 1, 6, 2, 1, 6, 3, 1, 2, 4, 2, 1, 1, 1, 6, 8, 3
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; -1 1/2 | 7/2 -1/2>.

Examples

			sqrt(12/35) = 2*sqrt(105)/35 = 0.5855400437691199076126307817440601137562...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Sqrt[3/35],10,120][[1]] (* Harvey P. Dale, Feb 29 2012 *)

Formula

Equals 2*A171546 = A010469/A010490.

A381687 Decimal expansion of the isoperimetric quotient of a truncated octahedron.

Original entry on oeis.org

7, 5, 3, 3, 6, 6, 6, 2, 5, 1, 6, 6, 1, 5, 6, 8, 8, 2, 2, 2, 9, 4, 8, 9, 4, 1, 4, 5, 7, 8, 7, 5, 1, 3, 6, 1, 9, 2, 7, 7, 0, 4, 5, 9, 5, 8, 6, 6, 2, 4, 9, 7, 1, 9, 8, 1, 3, 1, 4, 0, 1, 0, 3, 4, 9, 3, 7, 8, 4, 1, 9, 0, 6, 3, 4, 1, 2, 3, 5, 8, 1, 5, 8, 5, 1, 1, 7, 3, 2, 1
Offset: 0

Views

Author

Paolo Xausa, Mar 04 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.753366625166156882229489414578751361927704595866...
		

Crossrefs

Cf. A377341 (surface area), A377342 (volume).

Programs

  • Mathematica
    First[RealDigits[64*Pi/(3*(1 + 2*Sqrt[3])^3), 10, 100]]

Formula

Equals 36*Pi*A377342^2/(A377341^3).
Equals 64*Pi/(3*(1 + 2*sqrt(3))^3) = 64*A000796/(3*(1 + A010469)^3).

A386753 Decimal expansion of the surface area of a bilunabirotunda with unit edges.

Original entry on oeis.org

1, 2, 3, 4, 6, 0, 1, 1, 2, 1, 7, 4, 9, 3, 6, 2, 2, 2, 7, 8, 0, 9, 0, 9, 4, 0, 5, 9, 2, 5, 6, 6, 1, 8, 3, 1, 3, 1, 5, 1, 5, 1, 0, 7, 1, 8, 7, 6, 6, 1, 5, 5, 4, 5, 7, 2, 9, 3, 9, 9, 9, 2, 7, 8, 6, 9, 9, 9, 3, 4, 2, 0, 0, 2, 6, 5, 3, 4, 6, 4, 9, 9, 9, 4, 9, 2, 0, 5, 7, 3
Offset: 2

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The bilunabirotunda is Johnson solid J_91.

Examples

			12.346011217493622278090940592566183131515107...
		

Crossrefs

Cf. A189963 (volume - 1).

Programs

  • Mathematica
    First[RealDigits[2 + Sqrt[12] + Sqrt[5*(5 + Sqrt[20])], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J91", "SurfaceArea"], 10, 100]]

Formula

Equals 2 + 2*sqrt(3) + sqrt(5*(5 + 2*sqrt(5))) = 2 + A010469 + sqrt(5*(5 + A010476)).
Equals the largest root of x^8 - 16*x^7 - 36*x^6 + 1328*x^5 - 2946*x^4 - 16624*x^3 + 34796*x^2 + 61392*x - 10679.

A140457 Decimal expansion of surface area of unit elongated dodecahedron.

Original entry on oeis.org

1, 8, 1, 3, 8, 2, 7, 1, 5, 3, 7, 8, 2, 8, 0, 9, 7, 5, 3, 1, 5, 2, 3, 2, 0, 8, 8, 4, 8, 6, 0, 0, 0, 3, 3, 4, 2, 3, 3, 2, 2, 6, 7, 4, 9, 3, 3, 4, 4, 5, 4, 6, 5, 4, 2, 1, 5, 0, 9, 9, 8, 9, 4, 0, 8, 9, 3, 8, 5, 6, 4, 2, 8, 5, 3, 2, 6, 7, 5, 8, 2, 8, 9, 5, 2, 5, 4, 5, 1, 8, 7, 4, 2, 6, 0, 8, 3, 8, 4, 8, 9, 8, 8, 6, 3, 6, 1, 2, 6, 2, 2, 1, 4, 3, 3, 9, 5, 1, 2, 2, 0, 6, 1
Offset: 2

Views

Author

Jonathan Vos Post, Jun 26 2008

Keywords

Examples

			18.138271537828097532....
		

References

  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Fedorov, E. S. "Elemente der Gestaltenlehre." Mineralogicheskoe obshchestvo Leningrad (Verhandlungen der Russisch-Kaiserlichen Mineralogischen Gesellschaft zu St. Petersburg 21, 1-279, 1885.
  • Tutton, A. E. H. Crystallography and Practical Crystal Measurement. London, pp. 567 (Fig. 448) and 723 (Fig. 585), 1922.

Programs

  • Mathematica
    RealDigits[2*Sqrt[3]*(3+Sqrt[5]),10,130][[1]] (* Harvey P. Dale, Nov 26 2011 *)

Formula

2*sqrt(3)*(3 + sqrt(5)) = A010469*(1+A098317).

Extensions

Corrected offset. Added more digits R. J. Mathar, Jan 26 2009
Previous Showing 21-29 of 29 results.