cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A384142 Decimal expansion of the volume of a gyroelongated square bipyramid with unit edge.

Original entry on oeis.org

1, 4, 2, 8, 4, 0, 4, 5, 0, 2, 6, 2, 7, 7, 4, 8, 4, 0, 0, 5, 2, 7, 1, 4, 6, 5, 4, 9, 0, 7, 8, 8, 6, 7, 9, 2, 7, 9, 8, 0, 9, 0, 4, 1, 6, 4, 1, 8, 4, 7, 7, 8, 1, 6, 9, 2, 7, 4, 0, 4, 4, 7, 1, 1, 5, 5, 3, 3, 4, 9, 5, 5, 2, 1, 9, 8, 9, 4, 2, 8, 9, 2, 7, 8, 3, 2, 7, 2, 2, 9
Offset: 1

Views

Author

Paolo Xausa, May 22 2025

Keywords

Comments

The gyroelongated square bipyramid is Johnson solid J_17.

Examples

			1.428404502627748400527146549078867927980904164...
		

Crossrefs

Cf. A010502 (surface area).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[2] + Sqrt[4 + Sqrt[18]])/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J17", "Volume"], 10, 100]]

Formula

Equals (sqrt(2) + sqrt(4 + 3*sqrt(2)))/3 = (A002193 + sqrt(4 + A010474))/3.
Equals the largest real root of 81*x^4 - 108*x^2 - 72*x-14.

A011014 Decimal expansion of 4th root of 18.

Original entry on oeis.org

2, 0, 5, 9, 7, 6, 7, 1, 4, 3, 9, 0, 7, 1, 1, 7, 7, 5, 5, 8, 3, 0, 2, 7, 7, 2, 5, 5, 2, 0, 1, 0, 1, 0, 7, 8, 0, 1, 0, 2, 6, 9, 2, 7, 4, 4, 1, 5, 5, 4, 0, 4, 0, 7, 8, 5, 9, 7, 2, 0, 1, 4, 4, 6, 6, 2, 3, 2, 5, 5, 0, 5, 0, 0, 2, 3, 7, 4, 9, 8, 5, 6, 3, 7, 6, 9, 2, 1, 0, 5, 1, 3, 7, 1, 3, 7, 2, 5, 2
Offset: 1

Views

Author

Keywords

Examples

			2.0597671439071177558302772552010107801...
		

Crossrefs

Programs

A011395 Decimal expansion of 6th root of 18.

Original entry on oeis.org

1, 6, 1, 8, 8, 7, 0, 4, 0, 6, 8, 6, 0, 5, 6, 6, 6, 5, 1, 9, 3, 0, 3, 4, 8, 0, 0, 5, 2, 7, 0, 5, 9, 2, 2, 1, 9, 9, 8, 4, 4, 6, 7, 5, 0, 3, 9, 8, 3, 5, 4, 1, 5, 0, 0, 3, 9, 4, 9, 7, 4, 1, 0, 3, 1, 1, 7, 5, 8, 6, 5, 8, 0, 4, 9, 0, 2, 0, 7, 6, 1, 1, 7, 8, 0, 1, 7, 3, 2, 7, 0, 8, 1, 3, 2, 6, 3, 0, 9
Offset: 1

Views

Author

Keywords

Examples

			1.61887040686056665193034800527...
		

Crossrefs

Programs

Extensions

Last two digits corrected by Ivan Panchenko, Sep 06 2014

A017959 Powers of sqrt(18) rounded to nearest integer.

Original entry on oeis.org

1, 4, 18, 76, 324, 1375, 5832, 24743, 104976, 445375, 1889568, 8016758, 34012224, 144301645, 612220032, 2597429617, 11019960576, 46753733110, 198359290368, 841567195983, 3570467226624, 15148209527701
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010474, A001027 (bisection).

Programs

A358614 Decimal expansion of 9*sqrt(2)/32.

Original entry on oeis.org

3, 9, 7, 7, 4, 7, 5, 6, 4, 4, 1, 7, 4, 3, 2, 9, 8, 2, 4, 7, 5, 4, 7, 4, 9, 5, 3, 6, 8, 3, 9, 7, 7, 5, 8, 4, 5, 9, 7, 7, 2, 0, 2, 1, 4, 9, 4, 9, 7, 6, 6, 6, 4, 5, 5, 8, 0, 9, 4, 1, 1, 7, 6, 3, 0, 9, 8, 9, 3, 5, 0, 9, 5, 6, 7, 4, 6, 7, 6, 0, 4, 6, 7, 6, 6, 7, 1, 4, 9, 4, 0, 2, 9, 6, 4, 9, 1, 9, 2
Offset: 0

Views

Author

Bernard Schott, Dec 05 2022

Keywords

Comments

Smallest constant M such that the inequality
|a*b*(a^2 - b^2) + b*c*(b^2 - c^2) + c*a*(c^2 - a^2)| <= M * (a^2 + b^2 + c^2)^2
holds for all real numbers a, b, c.
Equality stands for any triple (a, b, c) proportional to (1 - 3*sqrt(2)/2, 1, 1 + 3*sqrt(2)/2), up to permutation.
This constant is the answer to the 3rd problem, proposed by Ireland during the 47th International Mathematical Olympiad in 2006 at Ljubljana, Slovenia (see links).
Equivalently |(a - b)(b - c)(c - a)(a + b + c)| / (a^2 + b^2 + c^2)^2 <= M with (a,b,c) != (0,0,0).

Examples

			0.3977475644174329824...
		

Crossrefs

Programs

  • Maple
    evalf(9*sqrt(2)/32), 100);
  • Mathematica
    RealDigits[9*Sqrt[2]/32, 10, 120][[1]] (* Amiram Eldar, Dec 05 2022 *)

Formula

Equals (3/16) * A230981 = (3/32) * A010474 = (9/32) * A002193 = (9/16) * A010503.

A379469 Decimal expansion of (1 + sqrt(6))/(3*sqrt(2)).

Original entry on oeis.org

8, 1, 3, 0, 5, 2, 5, 2, 9, 5, 8, 5, 1, 4, 1, 6, 0, 5, 9, 7, 6, 0, 9, 6, 9, 0, 1, 2, 0, 3, 5, 7, 3, 8, 0, 2, 0, 7, 5, 8, 8, 0, 3, 9, 7, 1, 6, 6, 2, 8, 4, 8, 8, 8, 2, 1, 4, 7, 1, 5, 6, 1, 6, 1, 4, 9, 0, 9, 9, 7, 5, 2, 0, 4, 6, 6, 1, 7, 8, 5, 2, 1, 6, 8, 7, 7, 9, 9, 8, 4, 6, 4, 0, 3, 5, 6, 4, 5, 4, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 23 2024

Keywords

Comments

This constant gives an upper bound to the Steiner ratio of a regular tetrahedron.

Examples

			0.81305252958514160597609690120357380207588039716628...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.6, p. 505.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1+Sqrt[6])/(3Sqrt[2]),10,100][[1]]

Formula

Minimal polynomial: 324*x^4 - 252*x^2 + 25. - Stefano Spezia, Aug 03 2025
Previous Showing 11-16 of 16 results.