cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-89 of 89 results.

A093822 Decimal expansion of -109/121 - 82/(121*sqrt(3)) + (2*sqrt(-35139 + 28634*sqrt(3)))/121 - Pi/3 + arccos((-1 + sqrt(3))/2).

Original entry on oeis.org

8, 4, 4, 1, 3, 7, 1, 2, 3, 7, 9, 5, 6, 3, 7, 6, 8, 1, 0, 6, 3, 0, 8, 7, 1, 3, 8, 0, 2, 9, 5, 2, 2, 6, 5, 4, 5, 1, 8, 4, 5, 1, 7, 4, 9, 8, 6, 6, 2, 7, 5, 9, 4, 2, 6, 2, 4, 8, 4, 9, 6, 8, 1, 6, 6, 4, 9, 6, 9, 8, 2, 9, 4, 0, 1, 0, 3, 9, 4, 1, 4, 6, 2, 2, 9, 9, 8, 0, 9, 6, 7, 0, 5, 8, 1, 6, 0, 1, 9, 8, 6, 9
Offset: 0

Views

Author

Eric W. Weisstein, Apr 16 2004

Keywords

Comments

Area of lamina found by Sprague in the Lebesgue minimal problem.

Examples

			0.844137123...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-109/121-82/(121Sqrt[3])+(2Sqrt[-35139+28634Sqrt[3]])/121-Pi/3+ ArcCos[(-1+Sqrt[3])/2],10,120][[1]] (* Harvey P. Dale, Sep 22 2020 *)

A194082 Sum{floor(sqrt(3)*k/2) : 1<=k<=n}.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 208, 227, 247, 268, 290, 313, 337, 362, 387, 413, 440, 468, 497, 527, 558, 590, 622, 655, 689, 724, 760, 797, 835, 873, 912, 952, 993, 1035, 1078, 1122, 1167, 1212
Offset: 1

Views

Author

Clark Kimberling, Aug 17 2011

Keywords

Comments

Partial sums of A171970.
Comment from R. J. Mathar, Dec 02 2012 (Start):
a(n-1) is the number of unit squares regularly packed into the isosceles triangle of edge length n.
The triangle may be aligned with the Cartesian axes by putting its bottom edge on the horizontal axis, so its vertices are at (x,y) = (0,0), (n,0) and (n/2,sqrt(3)*n/2), see A010527.
The area inside the triangle is sqrt(3)*n^2/4 = A120011*n^2. There is an obvious upper limit of floor(sqrt(3)*n^2/4) = A171971(n) to the count of non-overlapping unit squares inside this triangle.
Regular packing: We place the first row of unit squares so they touch the bottom edge of the triangle. Their number is limited by the length of the horizontal section of the line y=1 inside the triangle, n-2*y/sqrt(3), which touches all of these first-row squares at their top.
The number of unit squares in the next row, between y=1 and y=2, is limited by the length of the horizontal section of the line y=2 inside the triangle, n-2*y/sqrt(3). Continuing, in row y=1, 2, ... we insert floor(n-2*y/sqrt(3)) unit squares, all with the same orientation.
The total number of squares is sum_{ y=1, 2, ..., floor(n*sqrt(3)/2) } floor( n-2*y/sqrt(3) ), and resummation yields, up to an index shift, this sequence here.
(End)

Crossrefs

Cf. A171970.

Programs

  • Mathematica
    r = Sqrt[3]/2;
    c[k_] := Sum[Floor[j*r], {j, 1, k}];
    Table[c[k], {k, 1, 90}]
  • PARI
    a(n)=sum(k=1,n,sqrtint(3*k^2\4)) \\ Charles R Greathouse IV, Jan 06 2013

A333322 Decimal expansion of (3/8) * sqrt(3).

Original entry on oeis.org

6, 4, 9, 5, 1, 9, 0, 5, 2, 8, 3, 8, 3, 2, 8, 9, 8, 5, 0, 7, 2, 7, 9, 2, 3, 7, 8, 0, 6, 4, 7, 0, 2, 1, 3, 7, 6, 0, 3, 5, 5, 1, 9, 7, 0, 1, 7, 8, 8, 9, 2, 7, 3, 5, 5, 2, 0, 9, 2, 7, 6, 1, 7, 2, 9, 4, 4, 7, 4, 8, 8, 1, 3, 4, 0, 8, 0, 0, 0, 1, 3, 9, 0, 5, 4, 2, 9, 8, 2, 0, 0, 3, 3, 9, 6, 8, 2, 1, 5, 8, 7, 8, 3, 5, 9, 8, 0, 3, 0, 3, 0, 7, 7, 7, 5, 1, 3, 6, 3, 6
Offset: 0

Views

Author

Kritsada Moomuang, Mar 15 2020

Keywords

Comments

This is the area of the regular hexagon of diameter 1.
From Bernard Schott, Apr 09 2022 and Oct 01 2022: (Start)
For any triangle ABC, where (A,B,C) are the angles:
sin(A) * sin(B) * sin(C) <= (3/8) * sqrt(3) [Bottema reference],
cos(A/2) * cos(B/2) * cos(C/2) <= (3/8) * sqrt(3) [Mitrinovic reference],
and if (ha,hb,hc) are the altitude lengths and (a,b,c) the side lengths of this triangle [Scott Brown link]:
(ha+hb) * (hb+hc) * (hc+ha) / (a+b) * (b+c) * (c+a) <= (3/8) * sqrt(3).
The equalities are obtained only when triangle ABC is equilateral. (End)

Examples

			0.649519052838328985...
		

References

  • O. Bottema et al., Geometric Inequalities, Groningen, 1969, item 2.7, page 19.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.15, p. 526.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.2.2, page 111.

Crossrefs

Cf. A002194 (sqrt(3)), A104954.
Cf. A010527, A020821, A104956, A152623 (other geometric inequalities).

Programs

Formula

Equals A104954/2 or A104956/4.

A179453 Decimal expansion of the inradius of an icosidodecahedron with edge length 1.

Original entry on oeis.org

1, 4, 6, 3, 5, 2, 5, 4, 9, 1, 5, 6, 2, 4, 2, 1, 1, 3, 6, 1, 5, 3, 4, 4, 0, 1, 2, 5, 7, 7, 4, 2, 2, 8, 5, 8, 8, 2, 9, 0, 2, 3, 1, 8, 8, 4, 8, 5, 4, 3, 2, 2, 1, 4, 6, 6, 0, 1, 5, 8, 6, 4, 6, 7, 0, 2, 8, 9, 4, 5, 3, 4, 7, 1, 1, 4, 1, 7, 6, 8, 3, 7, 2, 8, 0, 4, 0, 5, 4, 0, 3, 1, 4, 2, 0, 4, 3, 3, 5, 3, 1, 1, 3, 5, 6
Offset: 1

Views

Author

Keywords

Comments

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.

Examples

			1.46352549156242113615344012577422858829023188485432214660158646702894...
		

Crossrefs

Programs

Formula

Digits of (5+3*sqrt(5))/8.

A240198 Numerator of rational approximation of sqrt(3)/2 within a tolerance 10^(-n).

Original entry on oeis.org

0, 4, 6, 13, 84, 181, 989, 2521, 11254, 35113, 35113
Offset: 0

Views

Author

Zak Seidov, Apr 02 2014

Keywords

Comments

Rational approximations of sqrt(3)/2 are 0/1, 4/5, 6/7, 13/15, 84/97, 181/209, 989/1142, 2521/2911, 11254/12995, 35113/40545, 35113/40545.

Crossrefs

Cf. A010527.

Programs

  • Mathematica
    Table[Numerator[Rationalize[Sqrt[3]/2, 10^(-n)]], {n, 0, 10}]

A272526 Decimal expansion of s_4, a 4-dimensional Steiner ratio analog.

Original entry on oeis.org

7, 4, 3, 9, 8, 5, 6, 1, 7, 8, 2, 8, 1, 3, 4, 0, 6, 2, 9, 9, 4, 3, 7, 9, 8, 8, 5, 9, 2, 0, 4, 1, 0, 5, 5, 2, 2, 7, 3, 7, 5, 9, 9, 4, 7, 5, 9, 6, 4, 2, 8, 3, 9, 1, 7, 0, 9, 2, 9, 6, 9, 1, 8, 5, 1, 1, 9, 8, 6, 5, 7, 6, 6, 4, 9, 8, 2, 5, 2, 3, 0, 4, 4, 9, 0, 9, 4, 4, 7, 6, 1, 2, 1, 7, 0, 9, 4, 4
Offset: 0

Views

Author

Jean-François Alcover, May 02 2016

Keywords

Examples

			0.7439856178281340629943798859204105522737599475964283917092969185...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.6 Steiner Tree Constants, p. 505.

Crossrefs

Programs

  • Mathematica
    s4 = Root[900 s^8 - 1863 s^6 + 2950 s^4 - 1511 s^2 + 164, s, 4];
    RealDigits[s4, 10, 98][[1]]

Formula

Minimal polynomial is 900 s^8 - 1863 s^6 + 2950 s^4 - 1511 s^2 + 164.

A354249 Decimal expansion of 27*sqrt(3) / (2*Pi).

Original entry on oeis.org

7, 4, 4, 2, 9, 4, 0, 0, 8, 8, 1, 9, 4, 1, 9, 2, 6, 6, 8, 4, 0, 2, 9, 0, 7, 7, 2, 7, 2, 2, 5, 0, 8, 7, 4, 5, 8, 8, 6, 4, 7, 1, 7, 4, 8, 4, 9, 4, 9, 6, 4, 8, 8, 1, 2, 7, 9, 1, 4, 4, 1, 2, 7, 3, 9, 2, 8, 9, 0, 9, 0, 9, 6, 8, 3, 5, 1, 4, 2, 2, 3, 0, 3, 4, 5, 1, 3, 0, 3, 8, 9, 1, 1, 2, 8, 0, 7, 0, 0, 4, 3
Offset: 1

Views

Author

Bernard Schott, May 20 2022

Keywords

Comments

For any triangle ABC (see Crux Mathematicorum):
(sin(A) + sin(B) + sin(C)) * (1/A + 1/B + 1/C) >= 27*sqrt(3) / (2*Pi),
where (A,B,C) are the angles in radians.
Equality stands iff triangle ABC is equilateral.

Examples

			7.442940088194192668402907727...
		

Crossrefs

Programs

  • Maple
    evalf(27*sqrt(3)/(2*Pi),110);
  • Mathematica
    RealDigits[(27*Sqrt[3]/(2*Pi)), 10, 110][[1]] (* Amiram Eldar, May 21 2022; corrected by Georg Fischer, Aug 04 2024 *)

Formula

Equals A010527 * A132717.

Extensions

a(100) corrected by Georg Fischer, Aug 04 2024

A373642 Decimal expansion of Sum_{k>=1} (sin(Pi/k))^(2k).

Original entry on oeis.org

1, 4, 8, 9, 5, 5, 0, 2, 4, 8, 8, 1, 3, 8, 2, 6, 4, 6, 8, 5, 8, 4, 1, 1, 5, 2, 4, 4, 5, 2, 8, 9, 4, 3, 6, 2, 5, 3, 9, 3, 7, 1, 5, 6, 0, 7, 5, 1, 5, 8, 6, 9, 8, 3, 2, 2, 7, 1, 3, 2, 6, 8, 5, 7, 9, 1, 2, 6, 9, 5, 7, 4, 5, 8, 1, 6, 8, 2, 0, 6, 7, 7, 0, 9, 6, 4, 8, 5, 3, 9, 1, 9, 4
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2024

Keywords

Examples

			0^2 + 1^4 + (0.86602...)^6 + (0.70710..)^8 + (0.58778..)^10 + ... = 1.4895502488138264685841...
		

Crossrefs

Cf. A269611, A010527 (sin Pi/3), A010503 (sin Pi/4), A019845 (sin Pi/5).

Programs

  • PARI
    sumpos(k = 1, sin(Pi/k)^(2*k)) \\ Amiram Eldar, Aug 20 2024

A375741 Decimal expansion of 6*Pi/(3*sqrt(3) + 8*Pi).

Original entry on oeis.org

6, 2, 1, 5, 0, 4, 8, 9, 6, 8, 8, 7, 4, 3, 1, 5, 9, 1, 4, 0, 5, 9, 6, 7, 8, 1, 8, 8, 0, 8, 0, 2, 8, 2, 7, 3, 1, 2, 7, 0, 7, 8, 8, 5, 1, 1, 5, 8, 5, 3, 4, 2, 9, 4, 0, 7, 0, 2, 8, 0, 6, 9, 9, 4, 5, 3, 1, 1, 4, 7, 4, 8, 1, 2, 5, 0, 6, 4, 4, 9, 6, 2, 2, 2, 6, 7, 4, 4, 5, 9, 9, 2, 9, 8, 0, 7, 6, 0, 6, 8
Offset: 0

Views

Author

Stefano Spezia, Aug 26 2024

Keywords

Comments

This constant expresses the expected proportion of individuals that belong to reciprocal nearest-neighbor relationship pairs in a population of random patterns over a plane.

Examples

			0.62150489688743159140596781880802827312707885...
		

References

  • E. C. Pielou, An Introduction to Mathematical Ecology, John Wiley & Sons, Inc. 1969. See pp. 121-122.

Crossrefs

Programs

  • Mathematica
    RealDigits[6Pi/(3Sqrt[3]+8Pi),10,100][[1]]

Formula

Equals Integral_{x=0..oo} 2*Pi*x*exp(-x^2*(sqrt(3)/2+4*Pi/3)) dx. [Pielou, 1969]
Previous Showing 81-89 of 89 results.