cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A075999 Product{[n/k + 1/2]: k=1,2,...,n}, where [x + 1/2] denotes the integer nearest to x.

Original entry on oeis.org

1, 2, 6, 8, 30, 72, 112, 384, 1080, 1800, 6336, 13824, 26208, 94080, 345600, 368640, 1057536, 5598720, 6566400, 24192000, 74511360, 93671424, 457850880, 955514880, 2156544000, 5887365120, 16460236800, 40967700480, 101025792000
Offset: 1

Views

Author

Clark Kimberling, Sep 29 2002

Keywords

Examples

			a(6) = 6*3*2*2*1*1 = 72.
		

Crossrefs

Cf. A075998 (product of second-nearest integers), A010786 (product of [n/k], k=1, 2, ..., n).

Programs

  • Mathematica
    Table[Product[Floor[n/k+1/2],{k,n}],{n,30}] (* Harvey P. Dale, Feb 15 2015 *)

A076000 a(n) = Product_{k=1..n} k/floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 12, 20, 120, 315, 1680, 6048, 60480, 138600, 1663200, 9266400, 69189120, 340540200, 5448643200, 22870848000, 411675264000, 2111894104320, 24135932620800, 230388447744000, 5068545850368000
Offset: 1

Views

Author

Clark Kimberling, Sep 29 2002

Keywords

Comments

Sketch of proof that a(n) is an integer from Paul R. Pudaite, 9/28/2002: 1. n! = Product{p^([n/p]+[n/p^2]+...): prime p <= n}. 2. Product{[n/k]: k = 1...n} = Product{i^([n/i]-[n/i+1]): i=2...n}. 3. = Product{Product{Product{p^([n/i]-[n/i+1]): i such that p^k|i}: k such that p^k <= n}: prime p <= n}. 4. Reorganizing the exponents in the innermost product: ([n/p^k] - [n/(p^k+1)]) + ([n/(2 p^k)] - [n/(2 p^k + 1)] + ... = [n/p^k] - ([n/(p^k+1)] - [n/(2 p^k)]) - ... <= [n/p^k].

Examples

			a(6) = 6*5*4*3*2*1/([6/1]*[6/2]*[6/3]*[6/4]*[6/5]*[6/6]) = 6!/(6*3*2*1*1*1) = 20, where [x] denotes the greatest integer <= x.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[k/Floor[n/k],{k,n}],{n,30}] (* Harvey P. Dale, Feb 27 2013 *)
  • PARI
    a(n) = prod(k=1, n, k/(n\k)); \\ Michel Marcus, Jun 24 2021

Formula

a(n) = n!/A010786(n).

A076001 (1/2)*A075998.

Original entry on oeis.org

1, 3, 4, 30, 24, 168, 288, 1080, 1920, 12672, 8640, 131040, 161280, 414720, 774144, 10575360, 8294400, 36771840, 69672960, 383201280, 729907200, 4578508800, 2043740160, 45287424000, 65213890560, 180592312320, 347807416320
Offset: 1

Views

Author

Clark Kimberling, Sep 29 2002

Keywords

Examples

			a(6) = (1/2)*<6/1>*<6/2>*<6/3>*<6/4>*<6/5>*<6/6> = (1/2)*7*4*3*1*2*2 = 168, where <x> denotes the integer second-nearest to x, as defined at A075998.
		

Crossrefs

Cf. A075998 (product of second-nearest integers), A010786 (product of [n/k], k=1, 2, ..., n).

A331213 a(n) = 1 + Sum_{i=1..n} (-1)^i * Product_{j=1..i} floor(n/j).

Original entry on oeis.org

1, 0, 1, -2, 5, -4, 13, -27, 89, -80, 191, -450, 2365, -1182, 3221, -13034, 40433, -22320, 96373, -193761, 772981, -728930, 1599357, -3428425, 21411337, -13595724, 31407273, -110011850, 377746853, -198079308, 1096983421, -2241234465, 7565512161, -6472208192
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2020

Keywords

Comments

Compare to the exponential series: exp(-n) = 1 - n + n*(n/2) - n*(n/2)*(n/3) + n*(n/2)*(n/3)*(n/4) - ...

Examples

			a(4) = 1 - 4 + 4*floor(4/2) - 4*floor(4/2)*floor(4/3) + 4*floor(4/2)*floor(4/3)*floor(4/4) = 1 - 4 + 4*2 - 4*2*1 + 4*2*1*1 = 5.
		

Crossrefs

Cf. similar sequences: A075885 (b=1), A208060 (b=2).
Cf. A010786.

Programs

  • Magma
    [1] cat [1+&+[(-1)^i*(&*[Floor(n/j):j in [1..i]]):i in [1..n]]:n in [1..33]]; // Marius A. Burtea, Jan 13 2020
  • Mathematica
    a[n_] := 1 + Sum[(-1)^i * Product[Floor[n/j], {j, 1, i}],{i, 1, n}]; Array[a, 34, 0] (* Amiram Eldar, Jan 13 2020 *)
  • PARI
    {a(n) = 1+sum(i=1, n, (-1)^i*prod(j=1, i, floor(n/j)))}
    

A145119 a(n) = Product_{k=1..n-1} (ceiling(n/k) - ceiling(n/k) mod 2).

Original entry on oeis.org

1, 2, 4, 16, 32, 96, 384, 1024, 2048, 10240, 30720, 73728, 294912, 688128, 1835008, 12582912, 25165824, 56623104, 283115520, 629145600, 1887436800, 11072962560, 26575110144, 57982058496, 231928233984, 753766760448, 1758789107712
Offset: 1

Views

Author

Reikku Kulon, Oct 02 2008

Keywords

Comments

Bounded by A010786 and A131385.
Each term has many more factors of two than any other prime factor.

Crossrefs

Programs

  • PARI
    a(n) = prod(k=1, n-1, ceil(n/k) - ceil(n/k) % 2); \\ Michel Marcus, Nov 17 2019
Previous Showing 21-25 of 25 results.