cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A168663 a(n) = n^7*(n^6 + 1)/2.

Original entry on oeis.org

0, 1, 4160, 798255, 33562624, 610390625, 6530486976, 48444916975, 274878955520, 1270935305649, 5000005000000, 17261365815551, 53496620605440, 151437584670385, 396857439333824, 973097619609375, 2251799947902976
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 13 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=4160, there are 2^13=8192 oriented arrangements of two colors. Of these, 2^7=128 are achiral. That leaves (8192-128)/2=4032 chiral pairs. Adding achiral and chiral, we get 4160. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 13 of A277504.
Cf. A010801 (oriented), A001015 (achiral).

Programs

Formula

From G. C. Greubel, Jul 28 2016: (Start)
G.f.: x*(1 + 4146*x + 740106*x^2 + 22765250*x^3 + 211641855*x^4 + 752814348*x^5 + 1137578988*x^6 + 752814348*x^7 + 211641855*x^8 + 22765250*x^9 + 740106*x^10 + 4146*x^11 + x^12)/(1 - x)^14.
E.g.f.: (1/2)*x*(2 + 4158*x + 261926*x^2 + 2532880*x^3 + 7508641*x^4 + 9321333*x^5 + 5715425*x^6 + 1899612*x^7 + 359502*x^8 + 39325*x^9 + 2431*x^10 + 78*x^11 + x^12)*exp(x). (End)
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010801(n) + A001015(n)) / 2 = (n^13 + n^7) / 2.
G.f.: (Sum_{j=1..13} S2(13,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..7} S2(7,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..12} A145882(13,k) * x^k / (1-x)^14.
E.g.f.: (Sum_{k=1..13} S2(13,k)*x^k + Sum_{k=1..7} S2(7,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>13, a(n) = Sum_{j=1..14} -binomial(j-15,j) * a(n-j). (End)

A324271 a(n) = 181*13^(13*n).

Original entry on oeis.org

181, 54820394293197793, 16603732764981619615170330497629, 5028857331023091670255052219467889871886268137, 1523115700170851818946635098990437850680396062232555484942661, 461313830041580805547042416276650834293620917849684448198307537920811805233, 139720475446324270671242216643939258928764157180440338773843068067157129372210783782659949
Offset: 0

Views

Author

Stefano Spezia, Mar 28 2019

Keywords

Comments

x = a(n) and y = A324272(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(26*n+1) = 4*y^13 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

Examples

			For a(0) = 181 and A324272(0) = 2, 181^2 + 7 = 32768 = 4*2^13.
		

Crossrefs

Cf. A324272: 2*13^(2*n); A010801: n^13; A001022: 13^n.

Programs

  • GAP
    List([0..20], n->181*302875106592253^n);
    
  • Magma
    [181*302875106592253^n: n in [0..20]];
    
  • Maple
    a:=n->181*302875106592253^n: seq(a(n), n=0..20);
  • Mathematica
    181 302875106592253^Range[0, 20]
  • PARI
    a(n) = 181*302875106592253^n;

Formula

O.g.f.: 181/(1 - 302875106592253*x).
E.g.f.: 181*exp(302875106592253*x).
a(n) = 302875106592253*a(n-1) for n > 0.
a(n) = 181*302875106592253^n.
a(n) = 181*A010801(A001022(n)).
Previous Showing 11-12 of 12 results.