cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A369983 Maximum of the absolute value of the coefficients of (1 - x)^3 * (1 - x^2)^3 * (1 - x^3)^3 * ... * (1 - x^n)^3.

Original entry on oeis.org

1, 3, 8, 15, 44, 50, 117, 186, 356, 561, 972, 1761, 3508, 5789, 10470, 19023, 35580, 62388, 113418, 205653, 376496, 674085, 1226181, 2211462, 4056220, 7287672, 13261764, 24005627, 43800562, 79033269, 143513301, 260061408, 473603594, 855436899, 1553736558, 2813222766
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^k)^3, {k, 1, n}], x]]], {n, 0, 35}]
  • PARI
    a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^i)^3)))); \\ Michel Marcus, Feb 07 2024
    
  • Python
    from collections import Counter
    def A369983(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                d[j+k] -= 3*a
                d[j+2*k] += 3*a
                d[j+3*k] -= a
            c = d
        return max(map(abs,c.values())) # Chai Wah Wu, Feb 07 2024

A178737 Coefficients in expansion of Jacobi theta_1'''(0).

Original entry on oeis.org

1, -27, 0, 125, 0, 0, -343, 0, 0, 0, 729, 0, 0, 0, 0, -1331, 0, 0, 0, 0, 0, 2197, 0, 0, 0, 0, 0, 0, -3375, 0, 0, 0, 0, 0, 0, 0, 4913, 0, 0, 0, 0, 0, 0, 0, 0, -6859, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9261, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12167, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15625, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 08 2010

Keywords

Examples

			G.f. = 1 - 27*x + 125*x^3 - 343*x^6 + 729*x^10 - 1331*x^15 + 2197*x^21 + ...
G.f. = q - 27*q^9 + 125*q^25 - 343*q^49 + 729*q^81 - 1331*q^121 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {x = Sqrt[8 n + 1]}, If[ IntegerQ[x], (-1)^Quotient[x, 2] x^3, 0]]; (* Michael Somos, Mar 19 2017 *)
  • PARI
    {a(n) = my(x); if( n<0, 0, if(issquare(8*n + 1, &x), (-1)^(x\2) * x^3))};

Formula

Given g.f. A(x), then q * A(q^8) = -1/2 * theta_1'''(0, q^4) where the Jacobi nome q = exp(-Pi * K' / K).
a(n) = b(8*n + 1) where b() is multiplicative with b(p^e) = 0 if e odd, b(2^e) = 0^e, b(p^e) = p^(3 * e/2) if p == 1 (mod 4), b(p^e) = (-p)^(3 * e/2) if p == 3 (mod 4).
Convolution of A006352 and A010816.
G.f.: Sum_{k>=0} (-1)^k * (2*k + 1)^3 * x^(k * (k+1) / 2).

A371552 Expansion of e.g.f. Product_{k>=1} (1 - x^k/k!)^3.

Original entry on oeis.org

1, -3, 3, 18, -57, -138, 246, 4281, 13383, -156906, -450822, -957729, 23375886, 289894875, -179027895, -3403581357, -174968380137, -419588974650, 4439383168602, 50400469832883, 1027067921064738, 428364930324489, -18456487538087145, -1019962180000311267
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 - x^k/k!)^3, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A380517 Absolute value of the minimum coefficient of (1 - x)^3 * (1 - x^2)^3 * (1 - x^3)^3 * ... * (1 - x^n)^3.

Original entry on oeis.org

1, 3, 6, 15, 24, 50, 81, 186, 305, 561, 972, 1761, 3129, 5789, 10470, 19023, 33549, 62388, 113418, 205653, 366198, 674085, 1226181, 2211462, 3953679, 7287672, 13261764, 24005627, 42998125, 79033269, 143513301, 260061408, 465444889, 855436899, 1553736558, 2813222766, 5052061560, 9250734231
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2025

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember;
         `if`(n=0, 1, expand(p(n-1)*(1-x^n)^3))
        end:
    a:= n-> abs(min(coeffs(p(n)))):
    seq(a(n), n=0..37);  # Alois P. Heinz, Jan 26 2025
  • Mathematica
    Table[Min[CoefficientList[Product[(1 - x^k)^3, {k, 1, n}], x]], {n, 0, 37}] // Abs
  • PARI
    a(n) = abs(vecmin(Vec(prod(k=1, n, (1-x^k)^3)))); \\ Michel Marcus, Jan 26 2025
Previous Showing 21-24 of 24 results.