cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 117 results. Next

A347218 Decimal expansion of Sum_{k=2..8} zeta(k).

Original entry on oeis.org

7, 9, 9, 6, 0, 1, 1, 6, 5, 4, 4, 2, 6, 6, 4, 5, 1, 4, 5, 6, 5, 2, 5, 2, 3, 2, 2, 9, 3, 0, 5, 0, 4, 7, 0, 0, 3, 5, 7, 6, 4, 0, 9, 9, 0, 6, 2, 1, 5, 8, 7, 9, 3, 2, 7, 7, 7, 3, 8, 0, 0, 6, 8, 1, 2, 8, 8, 2, 8, 6, 4, 9, 5, 9, 5, 6, 8, 2, 6, 7, 4, 2, 7, 6, 1, 1, 9
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			7.99601165442664514565252322930504700357640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 8]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

Formula

Equals A347217 + A013666. - R. J. Mathar, May 27 2024

A347219 Decimal expansion of Sum_{k=2..9} zeta(k).

Original entry on oeis.org

8, 9, 9, 8, 0, 2, 0, 0, 4, 7, 2, 5, 2, 7, 2, 7, 3, 6, 0, 0, 7, 0, 3, 7, 5, 9, 9, 8, 5, 3, 7, 4, 5, 9, 0, 6, 4, 0, 6, 2, 0, 1, 5, 7, 5, 7, 6, 1, 0, 7, 6, 8, 0, 8, 4, 3, 2, 2, 3, 9, 7, 2, 9, 7, 1, 9, 8, 0, 7, 1, 5, 4, 9, 3, 4, 7, 0, 8, 5, 1, 4, 1, 7, 1, 1, 5, 8
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			8.9980200472527273600703759985374590640620...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 9]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347220 Decimal expansion of Sum_{k=2..10} zeta(k).

Original entry on oeis.org

9, 9, 9, 9, 0, 1, 4, 6, 2, 2, 3, 8, 0, 5, 4, 5, 4, 4, 5, 4, 0, 7, 5, 2, 1, 9, 5, 7, 4, 3, 7, 7, 7, 8, 0, 8, 1, 0, 6, 8, 0, 3, 5, 2, 8, 9, 1, 7, 5, 2, 4, 5, 6, 0, 1, 5, 8, 0, 1, 8, 6, 2, 9, 1, 8, 3, 4, 3, 6, 3, 0, 1, 4, 4, 9, 8, 9, 9, 8, 0, 9, 6, 1, 0, 8, 6, 3
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			9.9990146223805454454075219574377780810680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 10]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A160897 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 8.

Original entry on oeis.org

1, 127, 1093, 8128, 19531, 138811, 137257, 520192, 796797, 2480437, 1948717, 8883904, 5229043, 17431639, 21347383, 33292288, 25646167, 101193219, 49659541, 158747968, 150021901, 247487059, 154764793, 568569856, 305171875, 664088461, 580865013, 1115624896
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^7 such that the quotient group Z^7 / L is C_n. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Maple
    A160897 := proc(n)
        add(numtheory[mobius](n/d)*d^7,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A160897(n)) ;
    end do: # R. J. Mathar, Mar 14 2016
  • Mathematica
    A160897[n_]:=DivisorSum[n, MoebiusMu[n/# ]*#^(8 - 1)/EulerPhi[n] &] (* Enrique Pérez Herrero, Oct 27 2010 *)
    f[p_, e_] := p^(6*e - 6) * (p^7-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(30, n, sumdiv(n^6, d, if(ispower(d, 7), moebius(sqrtnint(d, 7))*sigma(n^6/d), 0))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(6*f[i,2]-6)*(1+p+p^2+p^3+p^4+p^5+p^6); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_7(n)/J_1(n) = J_7(n)/phi(n) = A069092(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 27 2010
From Álvar Ibeas, Oct 30 2015: (Start)
Multiplicative with a(p^e) = p^(6e-6) * (p^7-1) / (p-1).
For squarefree n, a(n) = A000203(n^6). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^7, where c = (1/7) * Product_{p prime} (1 + (p^6-1)/((p-1)*p^7)) = 0.2761554804... .
Sum_{k>=1} 1/a(k) = zeta(6)*zeta(7) * Product_{p prime} (1 - 2/p^7 + 1/p^13) = 1.008982290854... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^7). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 27 2010

A308637 Decimal expansion of Pi^3/Zeta(3).

Original entry on oeis.org

2, 5, 7, 9, 4, 3, 5, 0, 1, 6, 6, 6, 1, 8, 6, 8, 4, 0, 1, 8, 5, 5, 8, 6, 3, 6, 5, 7, 9, 3, 9, 6, 5, 1, 3, 2, 9, 0, 0, 5, 0, 9, 5, 2, 3, 2, 7, 1, 3, 1, 2, 2, 6, 0, 7, 0, 6, 1, 4, 0, 2, 1, 3, 4, 0, 6, 4, 9, 4, 3, 4, 9, 1, 3, 4, 9, 2, 5, 0, 6, 1, 4, 1, 2, 2, 5, 1
Offset: 2

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

-----+---------------------------------
n | Zeta(n)
-----+---------------------------------
2 | Pi^2 / 6 = A013661.
3 | Pi^3 / 25.79... = A002117.
4 | Pi^4 / 90 = A013662.
5 | Pi^5 / A309926 = A013663.
6 | Pi^6 / 945 = A013664.
7 | Pi^7 / A309927 = A013665.
8 | Pi^8 / 9450 = A013666.
9 | Pi^9 / A309928 = A013667.
10 | Pi^10 / 93555 = A013668.
11 | Pi^11 / A309929 = A013669.
12 | 691*Pi^12 / 638512875 = A013670.
...
Cf. A002432, A091925, A276120 (Zeta(3)/Pi^3).

Programs

  • Mathematica
    RealDigits[Pi^3/Zeta[3], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^3/zeta(3)

Formula

Pi^3/Zeta(3) = A091925/A002117.

Extensions

More terms from Amiram Eldar, Aug 24 2019

A343359 Decimal expansion of 1/zeta(6).

Original entry on oeis.org

9, 8, 2, 9, 5, 2, 5, 9, 2, 2, 6, 4, 5, 8, 0, 4, 1, 9, 8, 0, 4, 8, 9, 6, 5, 6, 4, 9, 9, 3, 9, 2, 4, 1, 3, 2, 9, 5, 1, 2, 2, 1, 5, 1, 5, 9, 8, 6, 6, 0, 6, 8, 3, 0, 8, 4, 3, 7, 4, 0, 4, 0, 4, 9, 3, 5, 5, 0, 2, 5, 4, 1, 3, 4, 4, 6, 8, 7, 4, 2, 4, 8, 0, 8, 9, 8, 9, 5, 5, 4
Offset: 0

Views

Author

Karl-Heinz Hofmann, Apr 12 2021

Keywords

Comments

Decimal expansion of 1/zeta(6), the inverse of A013664.
1/zeta(6) has a known closed-form formula (945/Pi^6) like 1/zeta(2) = 6/Pi^2 and 1/zeta(4) = 90/Pi^4.
1/zeta(6) is the probability that 6 randomly selected numbers will be coprime. - A.H.M. Smeets, Apr 13 2021

Examples

			0.982952592264580419804896564993924132951221515986...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Zeta[6], 10, 100][[1]] (* Amiram Eldar, Apr 12 2021 *)
  • PARI
    1/zeta(6) \\ A.H.M. Smeets, Apr 13 2021

Formula

Equals 1/A013664 = 945/Pi^6.
From Amiram Eldar, Jun 01 2023: (Start)
Equals Sum_{k>=1} mu(k)/k^6, where mu is the Möbius function (A008683).
Equals Product_{p prime} (1 - 1/p^6). (End)

A363606 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^6.

Original entry on oeis.org

0, 1, 6, 22, 56, 133, 252, 484, 798, 1344, 2002, 3157, 4368, 6441, 8630, 12112, 15504, 21274, 26334, 35014, 42762, 55133, 65780, 84349, 98336, 123124, 143304, 176373, 201376, 247380, 278256, 336744, 379000, 451402, 502250, 600055, 658008, 775733, 855042
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 3, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^6)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 5) + 5*sigma(f, 4) + 5*sigma(f, 3) - 5*sigma(f, 2) - 6*sigma(f)) / 120; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k+3,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+3,5).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 5*sigma_4(n) + 5*sigma_3(n) - 5*sigma_2(n) - 6*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 5*zeta(s-4) + 5*zeta(s-3) - 5*zeta(s-2) - 6*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A381653 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,2,2).

Original entry on oeis.org

1, 9, 0, 7, 5, 1, 8, 2, 4, 1, 2, 2, 0, 8, 4, 2, 1, 3, 6, 9, 6, 4, 7, 2, 1, 1, 1, 8, 3, 5, 7, 9, 7, 5, 9, 8, 9, 8, 1, 5, 9, 0, 7, 7, 9, 3, 8, 1, 1, 6, 0, 0, 4, 2, 8, 4, 5, 4, 5, 1, 6, 2, 4, 5, 0, 0, 8, 1, 2, 2, 8, 4, 2, 9, 4, 1, 1, 7, 1, 0, 5, 8, 5, 3, 0, 2, 0, 1, 2, 0, 8, 6, 3, 4, 7, 5, 3, 4, 4, 4, 7, 4, 4, 2, 7
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2025

Keywords

Examples

			0.1907518241220842136964721118357975989
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3 Zeta[6]/16, 10, 105][[1]]
  • PARI
    zetamult([2,2,2])

Formula

Equals 3*A013664/16.

A160895 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7.

Original entry on oeis.org

1, 63, 364, 2016, 3906, 22932, 19608, 64512, 88452, 246078, 177156, 733824, 402234, 1235304, 1421784, 2064384, 1508598, 5572476, 2613660, 7874496, 7137312, 11160828, 6728904, 23482368, 12206250, 25340742, 21493836, 39529728, 21243690, 89572392
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^6 such that the quotient group Z^6 / L is C_nm x (C_m)^5 (and also (C_nm)^5 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Maple
    A160895 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(5*e-5)*(1+p+p^2+p^3+p^4+p^5) ; end do; a; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    A160895[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(7-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 20 2010 *)
    f[p_, e_] := p^(5*e - 5) * (p^6-1) / (p-1); ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(50, n, sumdiv(n^5, d, if(ispower(d, 6), moebius(sqrtnint(d, 6))*sigma(n^5/d), 0))) \\ Altug Alkan, Oct 30 2014
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(5*f[i,2]-5)*(1+p+p^2+p^3+p^4+p^5); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_6(n)/J_1(n)=J_6(n)/phi(n)=A069091(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 20 2010
Multiplicative with a(p^e) = p^(5e-5)*(1+p+p^2+p^3+p^4+p^5). - R. J. Mathar, Jul 10 2011
For squarefree n, a(n) = A000203(n^5). - Álvar Ibeas, Oct 30 2015
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^6, where c = (1/6) * Product_{p prime} (1 + (p^5-1)/((p-1)*p^6)) = 0.3203646372... .
Sum_{k>=1} 1/a(k) = zeta(5)*zeta(6) * Product_{p prime} (1 - 2/p^6 + 1/p^11) = 1.0195114923... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^6). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 20 2010

A216427 Numbers of the form a^2*b^3, where a >= 2 and b >= 2.

Original entry on oeis.org

32, 72, 108, 128, 200, 243, 256, 288, 392, 432, 500, 512, 576, 648, 675, 800, 864, 968, 972, 1024, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1944, 2000, 2048, 2187, 2304, 2312, 2592, 2700, 2888, 2916, 3087, 3125, 3136, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4096, 4232, 4500, 4563, 4608
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

Powerful numbers (A001694) that are not squares of cubefree numbers (A004709), cubes of squarefree numbers (A062838), or 6th powers of primes (A030516). - Amiram Eldar, Feb 07 2023

Crossrefs

Programs

  • Mathematica
    With[{max = 5000}, Union[Table[i^2*j^3, {j, 2, max^(1/3)}, {i, 2, Sqrt[max/j^3]}] // Flatten]] (* Amiram Eldar, Feb 07 2023 *)
  • PARI
    list(lim)=my(v=List()); for(b=2, sqrtnint(lim\4, 3), for(a=2, sqrtint(lim\b^3), listput(v, a^2*b^3))); Set(v) \\ Charles R Greathouse IV, Jan 03 2014
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primepi
    def A216427(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j, b = isqrt(x), integer_nthroot(x,6)[0]
            l, c = 0, n+x-1+primepi(b)+sum(mobius(k)*(j//k**3) for k in range(1, b+1))
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n) = 1 + ((zeta(2)-1)*(zeta(3)-1)-1)/zeta(6) - P(6) = 0.12806919584708298724..., where P(s) is the prime zeta function. - Amiram Eldar, Feb 07 2023
Previous Showing 41-50 of 117 results. Next