cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A380315 Denominator of sum of reciprocals of all prime divisors of all positive integers <= n.

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 210, 105, 35, 70, 770, 1155, 15015, 30030, 30030, 15015, 255255, 170170, 3233230, 1616615, 4849845, 9699690, 223092870, 111546435, 22309287, 44618574, 14872858, 7436429, 215656441, 6469693230, 200560490130, 100280245065, 100280245065
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Comments

Prime divisors counted without multiplicity.
Differs from A379370 first at n=15.

Examples

			0, 1/2, 5/6, 4/3, 23/15, 71/30, 527/210, 316/105, 117/35, 283/70, 3183/770, 5737/1155, 75736/15015, ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1/# &, PrimeQ[#] &], {n, 1, 33}] // Accumulate // Denominator
    Table[Sum[Floor[n/Prime[k]]/Prime[k], {k, 1, n}], {n, 1, 33}] // Denominator
    nmax = 33; CoefficientList[Series[1/(1 - x) Sum[x^Prime[k]/(Prime[k] (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
  • PARI
    a(n) = my(vp=primes(primepi(n))); denominator(sum(k=1, #vp, (n\vp[k])/vp[k])); \\ Michel Marcus, Jan 26 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^prime(k) / (prime(k)*(1 - x^prime(k))).
a(n) is the denominator of Sum_{k=1..pi(n)} floor(n/prime(k)) / prime(k).

A383752 Product of nonzero remainders n mod p, over all primes p < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 6, 8, 3, 8, 10, 36, 24, 8, 30, 288, 420, 1920, 2268, 640, 270, 2880, 9240, 13824, 7560, 19200, 17820, 120960, 64064, 362880, 5054400, 1881600, 475200, 165888, 464100, 6386688, 4082400, 1228800, 2120580, 34836480, 23474880, 217728000
Offset: 1

Views

Author

DarĂ­o Clavijo, May 28 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A383752[n_] := Times @@ DeleteCases[Mod[n, Prime[Range[PrimePi[n - 2]]]], 0];
    Array[A383752, 50] (* Paolo Xausa, Jun 05 2025 *)
  • PARI
    a(n) = vecprod(select(x->(x!=0), apply(lift, apply(x->Mod(n, x), primes([2,n-1]))))); \\ Michel Marcus, May 28 2025
  • Python
    from sympy import primerange
    def a(n):
        s = 1
        for p in primerange(0, n):
            if p > (n >> 1): s *= (n-p)
            elif (x:= n % p) > 0: s*= x
        return s
    print([a(n) for n in range(1,41)])
    

Formula

a(p) = A102647(p) if p prime.

A145191 Numbers m such that Sum_{i=1..m} omega(i)^2 is divisible by m, where omega is A001221.

Original entry on oeis.org

1, 20, 68, 903, 3876, 3890, 19096, 19122, 19127, 110990, 111004, 111007, 111010, 111013, 774276, 774277, 774278, 774279, 774303, 774313, 774314, 774315, 6615593, 70607550, 70607559, 959878582, 959878737, 959878753, 959878836, 959878846, 959878888, 959878902, 959878914
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 03 2008

Keywords

Comments

If for some m is c square, then we have RootMeanSquare(omega(1),...,omega(n)) = c.

Crossrefs

Programs

  • Mathematica
    With[{max = 10^5}, Position[Accumulate[PrimeNu[Range[max]]^2]/Range[max], ?IntegerQ] // Flatten] (* _Amiram Eldar, Sep 22 2024 *)
  • PARI
    isok(m) = !frac(sum(i=1, m, omega(i)^2)/m); \\ Michel Marcus, Mar 15 2022
    
  • PARI
    lista(nn) = {my(v = vector(nn, k, omega(k)^2)); print1(1, ", "); for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/n), print1(n, ", ")););} \\ Michel Marcus, Mar 16 2022
    
  • PARI
    listaa(nn) = {my(v = vector(nn, k, omega(k)^2)); print1(1, ", "); for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/n), print1(n, ", "));); for (m=1, 100, last = v[nn]; v = vector(nn, k, omega(k+m*nn)^2); v[1] += last; for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/(m*nn+n)), print1(n+m*nn, ", "));););} \\ Michel Marcus, Mar 16 2022

Extensions

a(7)-a(9) from Michel Marcus, Mar 15 2022
a(10)-a(25) from Michel Marcus, Mar 16 2022
a(26)-a(33) from Amiram Eldar, Sep 22 2024

A304066 a(n) = Sum_{k=1..n} k*floor(n/prime(k)).

Original entry on oeis.org

0, 1, 3, 4, 7, 10, 14, 15, 17, 21, 26, 29, 35, 40, 45, 46, 53, 56, 64, 68, 74, 80, 89, 92, 95, 102, 104, 109, 119, 125, 136, 137, 144, 152, 159, 162, 174, 183, 191, 195, 208, 215, 229, 235, 240, 250, 265, 268, 272, 276, 285, 292, 308, 311, 319, 324, 334, 345, 362, 368, 386, 398, 404, 405, 414
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Comments

Partial sums of A066328.

Crossrefs

Programs

  • Maple
    seq(add(k*floor(n/ithprime(k)),k=1..n),n=1..65); # Paolo P. Lava, May 14 2018
  • Mathematica
    Table[Sum[k Floor[n/Prime[k]], {k, n}], {n, 65}]
    nmax = 65; Rest[CoefficientList[Series[1/(1 - x) Sum[k x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Plus @@ (PrimePi[#[[1]]] & /@ FactorInteger[n]); a[1] = 0; Accumulate[Table[a[n], {n, 65}]]

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} k*x^prime(k)/(1 - x^prime(k)).
a(p^k) = a(p^k-1) + pi(p), where p is a prime and pi() = A000720.
a(n) = A056239(A048803(n)).

A332687 a(n) = Sum_{k=1..n} ceiling(n/prime(k)).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 13, 15, 17, 19, 22, 24, 27, 29, 32, 35, 37, 39, 42, 44, 47, 50, 53, 55, 58, 60, 63, 65, 68, 70, 74, 76, 78, 81, 84, 87, 90, 92, 95, 98, 101, 103, 107, 109, 112, 115, 118, 120, 123, 125, 128, 131, 134, 136, 139, 142, 145, 148, 151, 153
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Ceiling[n/Prime[k]], {k, 1, n}], {n, 1, 60}]
    Table[n + Sum[PrimeNu[k], {k, 1, n - 1}], {n, 1, 60}]
    nmax = 60; CoefficientList[Series[x/(1 - x)^2 + (x/(1 - x)) Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    With[{nmax = 100}, Range[nmax] + Join[{0}, Accumulate[Table[PrimeNu[k], {k, 1, nmax - 1}]]]] (* Amiram Eldar, Sep 21 2024 *)
  • PARI
    a(n) = sum(k=1, n, ceil(n/prime(k))); \\ Michel Marcus, Feb 21 2020
    
  • PARI
    lista(nmax) = my(s = 1); for(n = 2, nmax, print1(s, ", "); s += omega(n-1) + 1); \\ Amiram Eldar, Sep 21 2024

Formula

G.f.: x/(1 - x)^2 + (x/(1 - x)) * Sum_{k>=1} x^prime(k) / (1 - x^prime(k)).
a(n) = n + Sum_{k=1..n-1} omega(k), where omega = A001221.
a(n) = n - omega(n) + Sum_{k=1..n} pi(floor(n/k)), where pi = A000720.
a(n) = n + A013939(n-1) for n >= 2. - Amiram Eldar, Sep 21 2024

A346423 Numbers m such that Sum_{k=1..m} omega(k) = sigma(m).

Original entry on oeis.org

11, 230, 52830, 160908, 6134334960
Offset: 1

Views

Author

Metin Sariyar, Jul 16 2021

Keywords

Comments

Numbers k such that A013939(k) = sigma(k).

Examples

			The sum of number of distinct primes dividing numbers up to 11 is 1+1+1+1+2+1+1+1+2+1 = sigma(11), so 11 is a term.
		

Crossrefs

Programs

  • Mathematica
    s=0;Do[s=s+PrimeNu[n];If[DivisorSigma[1,n]==s,Print[n]],{n,2,160908}]

Extensions

a(5) from Martin Ehrenstein, Aug 22 2021

A380408 a(n) = Sum_{k>=0} floor(n/(2k)!).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107
Offset: 0

Views

Author

Akiva Weinberger, Jan 23 2025

Keywords

Comments

Partial sum of A060832 except for the first term in the sum.
Congruent to A034968(n) mod 2. Therefore, the parity of a(n) is the parity of the n-th permutation of k elements (k>=n) in lexicographic order.
For even n, a(n) equals A059563(n/2) whenever cosh(1)*n - a(n) < 1. The first time this fails is n=70, as a(70)=107 but A059563(35)=108. For small n, such failures appear to be very rare; however, the asymptotic density of these failures approaches 1.

Crossrefs

Programs

  • PARI
    a(n) = round(sumpos(k=0, n\(2*k)!)); \\ Michel Marcus, Jan 24 2025

Formula

a(n) = cosh(1)*n - f(n) where f(n) = Sum_{k>=0} fract(n/(2k)!). Here, fract() is the fractional part. The error term f(n) is unbounded above, and the greatest lower bound is 0 (even excluding n=0). The first values for which f(n) > s for s=1,2,3 are f(13)=1.06005, f(407) = 2.03382, and f(22319) = 3.01669. The error is almost periodic: for large m, f(n) is approximately f(n+(2m)!). If n is odd, f(n) > 1/2. f(n) alternately rises and descends, that is, f(2*n)f(2*n+2) for all n.
Previous Showing 41-47 of 47 results.