cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A145154 Coefficients in expansion of Eisenstein series E_1.

Original entry on oeis.org

1, 4, 8, 8, 12, 8, 16, 8, 16, 12, 16, 8, 24, 8, 16, 16, 20, 8, 24, 8, 24, 16, 16, 8, 32, 12, 16, 16, 24, 8, 32, 8, 24, 16, 16, 16, 36, 8, 16, 16, 32, 8, 32, 8, 24, 24, 16, 8, 40, 12, 24, 16, 24, 8, 32, 16, 32, 16, 16, 8, 48
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2009

Keywords

Examples

			1 + 4*q + 8*q^2 + 8*q^3 + 12*q^4 + 8*q^5 + 16*q^6 + 8*q^7 + 16*q^8 + ...
		

Crossrefs

Cf. A000005, A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).

Programs

  • Maple
    with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60),q,61); end; E(1);
  • Mathematica
    terms = 61; CoefficientList[1+4*Sum[x^k/(1-x^k), {k, 1, terms}]+O[x]^terms, x] (* Jean-François Alcover, Feb 27 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, 4 * numdiv(n))} /* Michael Somos, Jul 04 2011 */

Formula

a(0) = 1; for n >= 1, a(n) = 4*A000005(n). [After the PARI-program of Michael Somos.] - Antti Karttunen, May 25 2017

A282328 Coefficients in q-expansion of E_4*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -1272, 351432, 89559456, -28689603384, -3415837464144, -155926897275744, -3967939206760128, -65540990858009400, -777517458842153496, -7105797244669716432, -52584588767807410464, -326903749149928526688, -1755591468945924647184
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A013973 (E_6).
Cf. A013974 (E_4*E_6 = E_10), A282287 (E_4*E_6^2), this sequence (E_4*E_6^3).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282382 Coefficients in q-expansion of E_4^6*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 936, 134568, -173988576, -104617833048, -27210540914064, -3910401774129888, -322823174243838912, -15429983442476298840, -469709326015243815672, -9973673112569954220432, -158215072218253260221088, -1972939697011615168926432
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), A282047 (E_4^4*E_6), A282048 (E_4^5*E_6), this sequence (E_4^6*E_6).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^6*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282401 Eisenstein series E_28(q) (alternate convention E_14(q)), multiplied by 3392780147.

Original entry on oeis.org

3392780147, 6960, 934155393840, 53074158495516480, 125380214560150002480, 51856040954589843756960, 7123493021854278627673920, 457358042050198589771226240, 16828247534415852672059972400, 404722169541211889603611092720
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24), A282356 (657931*E_26), this sequence (3392780147*E_28).
Cf. A282402 (E_4^7), A282403 (E_4^4*E_6^2), A282404 (E_4*E_6^4).

Programs

  • Mathematica
    terms = 10;
    E28[x_] = 3392780147 + 6960*Sum[k^27*x^k/(1 - x^k), {k, 1, terms}];
    E28[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) = 489693897*A282402(n) + 2507636250*A282403(n) + 395450000*A282404(n).

A282461 Coefficients in q-expansion of E_4^3*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -792, -197208, 180534816, 34731625896, -11282282306064, -3475192229286624, -319729598062193088, -15436589476561121880, -469831003553540798136, -9973761497118317484432, -158213220814147434639264, -1972935965978751882433248
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2017

Keywords

Crossrefs

Cf. A013974 (E_4*E_6 = E_10), A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^3*E_6^3 = E_10^3).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^3* E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282182 Eisenstein series E_30(q) (alternate convention E_15(q)), multiplied by 1723168255201.

Original entry on oeis.org

1723168255201, -171864, -92268782591832, -11795091175438423776, -49536425459206569762648, -32012164592742919922046864, -6332441368275869747902027488, -553385882817076320573218661312, -26594665913504249904864455466840
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24), A282356 (657931*E_26), A282401 (3392780147*E_28), this sequence (1723168255201*E_30).
Cf. A282382 (E_4^6*E_6), A282461 (E_4^3*E_6^3), A282433 (E_6^5).

Programs

  • Mathematica
    terms = 9;
    E30[x_] = 1723168255201 - 171864*Sum[k^29*x^k/(1 - x^k), {k, 1, terms}];
    E30[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) = 815806500201*A282382(n) + 881340705000*A282461(n) + 26021050000*A282433(n).

A282404 Coefficients in q-expansion of E_4*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -1776, 975888, -66529344, -79516693488, 9511628122080, 2031621786790848, 134911299030780288, 4962883791154433040, 119289719378991436368, 2051366007318600561120, 26893975935849646148928, 281804567385216854182848
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2017

Keywords

Crossrefs

Cf. A013974 (E_4*E_6 = E_10), A282287 (E_4*E_6^2), A282328 (E_4*E_6^3), this sequence (E_4*E_6^4).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A290049 Coefficients in expansion of 691*E_8*E_10*E_12.

Original entry on oeis.org

691, 214776, 10042488, -31595258016, -37453557900168, -14820419119618224, -2593285239712936608, -222297419357081232192, -10663770067272328258440, -324599563661107722245352, -6891830216922929182318512, -109326152051786546417315808
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2017

Keywords

Crossrefs

Cf. A008410 (E_8), A013974 (E_10), A029828 (691*E_12).

Programs

  • Mathematica
    terms = 12;
    E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
    E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
    E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
    691*E8[x]*E10[x]*E12[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

A295790 Coefficients in expansion of E_10^(-1/4).

Original entry on oeis.org

1, 66, 44748, 14628504, 7092895062, 3108317470632, 1487551265488728, 706997530642862976, 344758210436694126204, 169166701402985932594410, 83918648754791525856013272, 41891672444283862758775998792, 21045241902624298023560126068200
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2018

Keywords

Crossrefs

Cf. A013974 (E_10), A110150.

Formula

Convolution inverse of A110150.
a(n) ~ 2^(5/4) * 3^(1/4) * Gamma(3/4)^7 * exp(2*Pi*n) / (3 * Pi^(5/2) * n^(3/4)). - Vaclav Kotesovec, Jun 03 2018

A282540 Eisenstein series E_32(q) (alternate convention E_16(q)), multiplied by 7709321041217.

Original entry on oeis.org

7709321041217, 32640, 70093866303360, 20160859654708062720, 150525431711563807489920, 151991844177246093750032640, 43295116458269350559666465280, 5149788469617367127914995164160, 323250903208723929093223124860800
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24), A282356 (657931*E_26), A282401 (3392780147*E_28), A282182 (1723168255201*E_30), this sequence (7709321041217*E_32).
Cf. A282474 (E_4^8), A282541 (E_4^5*E_6^2), A282543 (E_4^2*E_6^4).

Programs

  • Mathematica
    terms = 9;
    E32[x_] = 7709321041217 + 32640*Sum[k^31*x^k/(1 - x^k), {k, 1, terms}];
    E32[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) = 764412173217*A282474(n) + 5323905468000 * A282541(n) + 1621003400000 * A282543(n).
Previous Showing 31-40 of 40 results.