cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 80 results. Next

A163504 a(n) = abs(n-th prime minus n-th odd nonprime).

Original entry on oeis.org

1, 6, 10, 14, 14, 14, 16, 16, 16, 16, 18, 14, 14, 14, 16, 12, 10, 14, 10, 10, 12, 8, 8, 4, 2, 2, 2, 4, 6, 4, 8, 10, 14, 14, 20, 18, 22, 22, 24, 28, 32, 28, 36, 34, 36, 34, 42, 52, 52, 52, 50, 54, 54, 62, 62, 62, 66, 66, 70, 72, 70, 78, 90, 92, 92, 92, 100, 102, 110, 106, 108, 112
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 29 2009

Keywords

Examples

			a(1)=abs(2-1)=1; a(2)=abs(3-9)=6.
		

Crossrefs

Programs

  • Maple
    A014076 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do: end if; end proc: A163504 := proc(n) abs(ithprime(n)-A014076(n)) ; end: seq(A163504(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
  • Mathematica
    A014076 := Select[Range[1, 10000, 2], PrimeOmega[#] != 1 &]; Table[Abs[Prime[n] - A014076[[n]]], {n,1,50}] (* G. C. Greubel, Jul 27 2017 *)
    Module[{nn=250,onp},onp=Select[Range[1,nn,2],!PrimeQ[#]&];Abs[#[[1]]-#[[2]]]&/@Thread[{Prime[Range[Length[onp]]],onp}]] (* Harvey P. Dale, Dec 07 2024 *)

Formula

a(n) = abs(A000040(n)-A014076(n)).

Extensions

An 8 inserted by R. J. Mathar, Oct 10 2009

A163505 a(n) = (n-th odd nonprime) mod (n-th odd number).

Original entry on oeis.org

0, 0, 0, 0, 7, 5, 7, 5, 5, 7, 7, 5, 5, 3, 5, 3, 3, 5, 3, 3, 3, 1, 1, 46, 46, 48, 52, 1, 1, 58, 58, 58, 58, 58, 60, 62, 62, 66, 66, 66, 66, 70, 70, 72, 72, 74, 76, 76, 78, 78, 82, 82, 82, 82, 86, 90, 90, 90, 90, 90, 92, 92, 92, 92, 92, 94, 98, 100, 100, 104, 104, 104, 104, 106, 106
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 29 2009

Keywords

Examples

			a(1) =  1 mod 1 = 0;
a(2) =  9 mod 3 = 0;
a(3) = 15 mod 5 = 0;
a(4) = 21 mod 7 = 0;
a(5) = 25 mod 9 = 7.
		

Crossrefs

Programs

  • Maple
    A014076 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do: end if; end proc:
    A163505 := proc(n) A014076(n) mod (2*n-1); end: seq(A163505(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
  • Mathematica
    A014076 := Select[Range[1, 10000, 2], PrimeOmega[#] != 1 &]; Table[Mod[A014076[[n]], 2*n - 1], {n,1,50}] (* G. C. Greubel, Jul 27 2017 *)

Formula

a(n) = A014076(n) mod A005408(n-1). [corrected by R. J. Mathar, Oct 10 2009]

Extensions

Missing term between a(53) and a(54) inserted by G. C. Greubel, Jul 27 2017

A163506 a(n) = n-th odd nonprime * n-th odd number.

Original entry on oeis.org

1, 27, 75, 147, 225, 297, 429, 525, 663, 855, 1029, 1173, 1375, 1539, 1827, 2015, 2277, 2625, 2849, 3159, 3485, 3741, 4095, 4371, 4655, 5049, 5565, 6105, 6555, 6903, 7259, 7623, 7995, 8375, 8901, 9443, 9855, 10575, 11011, 11455, 11907, 12699, 13175, 13833
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 29 2009

Keywords

Examples

			a(1) =  1*1 =   1;
a(2) =  9*3 =  27;
a(3) = 15*5 =  75;
a(4) = 21*7 = 147;
a(5) = 25*9 = 225.
		

Crossrefs

Programs

  • Maple
    A014076 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do: end if; end proc:
    A163506 := proc(n) A014076(n) *(2*n-1); end: seq(A163506(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
  • Mathematica
    A014076 := Select[Range[1, 10000, 2], PrimeOmega[#] != 1 &]; Table[A014076[[n]]*(2*n - 1), {n, 1, 50}] (* G. C. Greubel, Jul 27 2017 *)

Formula

a(n) = A014076(n)*A005408(n-1). - corrected by R. J. Mathar, Oct 10 2009

Extensions

7279 replaced with 7259 by R. J. Mathar, Oct 10 2009

A163636 The sum of all odd numbers from 2n-1 up to the n-th odd nonprime.

Original entry on oeis.org

1, 24, 60, 112, 153, 171, 253, 275, 336, 448, 525, 555, 640, 672, 828, 864, 969, 1155, 1197, 1320, 1449, 1495, 1632, 1680, 1728, 1875, 2133, 2407, 2580, 2640, 2700, 2760, 2820, 2880, 3069, 3264, 3328, 3672, 3740, 3808, 3876, 4248, 4320, 4551, 4625, 4864
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 02 2009

Keywords

Examples

			a(1)=1. a(2)=3+5+7+9=24. a(3)=5+7+9+11+13+15=60.
		

Crossrefs

Programs

  • Maple
    A014076 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then RETURN(a) ; fi; od: fi; end:
    A163636 := proc(n) local onpr; onpr := A014076(n) ; (onpr+2*n-1)*(onpr-2*n+3)/4; end: seq(A163636(n),n=1..80) ; # R. J. Mathar, Aug 08 2009
  • Mathematica
    A014076 := Select[Range[1, 10299, 2], PrimeOmega[#] != 1 &]; Table[(A014076[[n]] + 2*n - 1)*(A014076[[n]] - 2*n + 3)/4, {n, 1, 50}] (* G. C. Greubel, Jul 31 2017 *)
    Module[{nn=201,onp},onp=Select[Range[1,nn,2],!PrimeQ[#]&];Table[Total[ Range[ 2n-1,onp[[n]],2]],{n,Length[onp]}]] (* Harvey P. Dale, Jul 03 2020 *)
  • Python
    from sympy import primepi
    def A163636(n):
        if n == 1: return 1
        m, k, n2 = n-1, primepi(n) + n - 1 + (n>>1), (n<<1)-1
        while m != k:
            m, k = k, primepi(k) + n - 1 + (k>>1)
        return (lambda x: (x+n2)*(x-n2+2)>>2)(m) # Chai Wah Wu, Jul 31 2024

Formula

a(n) = A005408(n-1)+A005408(n)+...+A014076(n);
a(n) = ( A014076(n)+2*n-1 ) *( A014076(n)-2*n+3 )/4.

Extensions

Edited and a(21) corrected by R. J. Mathar, Aug 08 2009

A165955 n-th odd nonprime plus n-th even nonprime.

Original entry on oeis.org

1, 13, 21, 29, 35, 39, 47, 51, 57, 65, 71, 75, 81, 85, 93, 97, 103, 111, 115, 121, 127, 131, 137, 141, 145, 151, 159, 167, 173, 177, 181, 185, 189, 193, 199, 205, 209, 217, 221, 225, 229, 237, 241, 247, 251, 257, 263, 267, 273, 277, 285, 289, 293, 297, 305, 313, 317, 321, 325
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 01 2009

Keywords

Examples

			a(1) = 1+0 = 1. a(2) = 9+4 = 13. a(3) = 15+6 = 21.
		

Crossrefs

Programs

  • Mathematica
    A014076 := Select[Range@500, ! PrimeQ@# && OddQ@# &]; A163300 := Drop[Range[0, 500, 2], {2}]; Table[(A163300[[n]] + A014076[[n]]), {n, 1, 50}] (* G. C. Greubel, Sep 17 2017 *)
    Module[{nn=300,np,enp,onp,len},np=Select[Range[0,nn],!PrimeQ[#]&];enp= Select[ np,EvenQ];onp=Select[np,OddQ];len=Min[Length[enp], Length[ onp]]; Total/@Thread[{Take[enp,len],Take[onp,len]}]] (* Harvey P. Dale, Nov 28 2018 *)
  • Python
    from sympy import primepi
    def A165955(n):
        if n == 1: return 1
        m, k = n-1, primepi(n) + n - 1 + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n - 1 + (k>>1)
        return m+(n<<1) # Chai Wah Wu, Aug 01 2024

Formula

a(n) = A014076(n) + A163300(n).

Extensions

Entries checked by R. J. Mathar, Oct 10 2009

A165971 The n-th odd nonprime minus the n-th even nonprime.

Original entry on oeis.org

1, 5, 9, 13, 15, 15, 19, 19, 21, 25, 27, 27, 29, 29, 33, 33, 35, 39, 39, 41, 43, 43, 45, 45, 45, 47, 51, 55, 57, 57, 57, 57, 57, 57, 59, 61, 61, 65, 65, 65, 65, 69, 69, 71, 71, 73, 75, 75, 77, 77, 81, 81, 81, 81, 85, 89, 89, 89, 89, 89, 91, 91, 91, 91, 91, 93, 97, 99, 99, 103
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 02 2009

Keywords

Examples

			a(1) = 1-0 = 1. a(2) = 9-4 = 5. a(3) = 15-6 = 9.
		

Crossrefs

Programs

  • Mathematica
    A014076 := Select[Range@500, ! PrimeQ@# && OddQ@# &]; A163300 := Drop[Range[0, 500, 2], {2}]; Table[(-A163300[[n]] + A014076[[n]]), {n, 1, 50}] (* G. C. Greubel, Sep 17 2017 *)
  • Python
    from sympy import primepi
    def A165971(n):
        if n == 1: return 1
        m, k = n-1, primepi(n) + n - 1 + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n - 1 + (k>>1)
        return m-(n<<1) # Chai Wah Wu, Aug 01 2024

Formula

a(n) = A014076(n) - A163300(n).
Equals: {1} U A160522.

Extensions

77 duplicated by R. J. Mathar, Oct 10 2009

A166160 a(n) = (n-th odd prime + n-th odd nonprime)/2 - 1.

Original entry on oeis.org

1, 6, 10, 15, 18, 21, 25, 28, 33, 37, 42, 45, 48, 51, 57, 61, 64, 70, 73, 76, 81, 84, 89, 94, 97, 100, 105, 109, 113, 121, 124, 128, 130, 136, 139, 144, 148, 153, 157, 161, 163, 171, 173, 177, 179, 187, 195, 198, 201, 204, 210, 212, 218, 222, 228, 234, 236, 240, 243
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 09 2009

Keywords

Crossrefs

Programs

  • Maple
    A065091 := proc(n) ithprime(n+1) ; end proc:
    A014076 := proc(n) if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a ; end if; end do: end if; end proc:
    A166160 := proc(n) (A065091(n)+A014076(n))/2-1 ; end proc: seq(A166160(n),n=1..120) ; # R. J. Mathar, May 21 2010
  • Mathematica
    A014076 := Select[Range@250, ! PrimeQ@# && OddQ@# &]; A166160 := Prime[Range[2, 150]]; Table[(A166160[[n]] + A014076[[n]])/2 - 1, {n, 1, 50}] (* G. C. Greubel, Sep 17 2017 *)
    Module[{nn=250,op,onp},op=Prime[Range[2,nn]];onp=Select[Range[1,nn,2],!PrimeQ[#]&];Total[#]/2-1&/@Thread[{Take[op,Length[ onp]],onp}]] (* Harvey P. Dale, Mar 02 2025 *)

Formula

a(n) = A005097(n) + A047845(n), where A005097 U A047845 = A001477.
a(n) = (A065091(n) + A014076(n))/2 - 1.

Extensions

Entries checked by R. J. Mathar, May 21 2010

A166236 Absolute value of (n-th odd prime minus n-th odd nonprime)/2.

Original entry on oeis.org

1, 2, 4, 5, 6, 5, 7, 6, 5, 7, 6, 5, 6, 5, 5, 3, 4, 4, 3, 4, 3, 2, 1, 2, 3, 2, 1, 1, 1, 5, 6, 8, 8, 12, 11, 12, 14, 13, 15, 17, 17, 19, 19, 19, 19, 23, 27, 28, 27, 28, 28, 28, 32, 34, 34, 34, 34, 36, 37, 37, 40, 46, 47, 47, 48, 53, 53, 56, 56, 55, 57, 60, 62, 63, 64, 65, 68, 68, 71, 73
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 09 2009

Keywords

Examples

			a(1)=abs(3-1)/2=1; a(2)=abs(5-9)/2=abs(-2)=2; a(3)=abs(7-15)/2=abs(-4)=4.
		

Crossrefs

Programs

Formula

a(n) = abs(A065091(n) - A014076(n))/2.

Extensions

Entries checked by R. J. Mathar, May 21 2010

A173136 Odd nonprimes n such that exactly one of 2n-1 and 2n+1 is prime.

Original entry on oeis.org

1, 27, 33, 35, 39, 45, 49, 55, 57, 63, 65, 81, 87, 91, 95, 105, 111, 115, 117, 119, 121, 125, 129, 147, 153, 155, 159, 165, 169, 175, 177, 183, 187, 189, 195, 201, 205, 209, 215, 217, 219, 221, 225, 243, 245, 249, 255, 273, 279, 289, 297, 299, 301, 303, 315
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 10 2010

Keywords

Examples

			a(1)=1 because 2*1-1=1 is nonprime and 2*1+1=3 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1,341,2],!PrimeQ[#]&&Total[Boole[PrimeQ[2 #+{1,-1}]]]==1&] (* Harvey P. Dale, Sep 01 2017 *)

Extensions

Corrected at 3 or more places by R. J. Mathar, Mar 09 2010

A279051 Sum of odd nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 16, 1, 1, 10, 1, 1, 22, 1, 1, 1, 26, 1, 37, 1, 1, 16, 1, 1, 34, 1, 36, 10, 1, 1, 40, 1, 1, 22, 1, 1, 70, 1, 1, 1, 50, 26, 52, 1, 1, 37, 56, 1, 58, 1, 1, 16, 1, 1, 94, 1, 66, 34, 1, 1, 70, 36, 1, 10, 1, 1, 116, 1, 78, 40, 1, 1, 118, 1, 1, 22, 86, 1, 88, 1, 1, 70, 92, 1, 94, 1, 96, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 17 2017

Keywords

Examples

			a(9) = 10 because 9 has 3 divisors {1, 3, 9} among which 2 are odd nonprime {1, 9} therefore 1 + 9 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(d::even or d::prime, 0, d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    Table[DivisorSum[n, #1 &, Mod[#1, 2] == 1 && ! PrimeQ[#1] &], {n, 97}]
    nmax = 97; Rest[CoefficientList[Series[Sum[k x^k/(1 + x^k), {k, 1, nmax}] - Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sumdiv(n, d, !isprime(d)*(d%2)*d); \\ Michel Marcus, Sep 18 2017

Formula

G.f.: A(x) = B(x) - C(x), where B(x) = Sum_{k>=1} k*x^k/(1 + x^k), C(x) = Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).
a(n) = Sum_{d|n, d odd nonprime} d.
a(A093641(n)) = 1.
Previous Showing 61-70 of 80 results. Next