cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A173561 Numbers k such that gpf(k^2+1)/k sets a new record of low value, where gpf(k) is the greatest prime dividing k (A006530).

Original entry on oeis.org

1, 3, 7, 38, 47, 57, 157, 239, 829, 882, 993, 1772, 2673, 2917, 2943, 4747, 4952, 5257, 6118, 9466, 12943, 17557, 18543, 34208, 44179, 72662, 85353, 114669, 219602, 260359, 320078, 330182, 478707, 485298, 1083493, 1143007, 1477034, 1528649, 1615463, 1635786, 1984933
Offset: 1

Views

Author

M. J. Knight (melknightdr(AT)verizon.net), Feb 21 2010

Keywords

Comments

This is an infinite sequence, since the solutions to the Pell equations for primes p = 4*k+1 will give ratios with limit 0. For example, the entry 7 satisfies 7^2 - 2*5^2 = -1 and the ratio is 5/7. However, not all entries are given by this technique.

Examples

			a(3) = 7 because 7^2+1 = 2*5^2 and 5/7 is smaller than all previous results.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FactorInteger[n^2 + 1][[-1, 1]]/n; s = {}; fm = 3; Do[f1 = f[n]; If[f1 < fm, fm = f1; AppendTo[s, n]], {n, 1, 2*10^4}]; s (* Amiram Eldar, Mar 03 2021 *)

Extensions

More terms from Amiram Eldar, Mar 03 2021

A219586 Greatest prime factor of Product_{x=1..n} (x^2 + 1).

Original entry on oeis.org

2, 5, 5, 17, 17, 37, 37, 37, 41, 101, 101, 101, 101, 197, 197, 257, 257, 257, 257, 401, 401, 401, 401, 577, 577, 677, 677, 677, 677, 677, 677, 677, 677, 677, 677, 1297, 1297, 1297, 1297, 1601, 1601, 1601, 1601, 1601, 1601, 1601, 1601, 1601, 1601, 1601, 1601
Offset: 1

Views

Author

Michel Marcus, Nov 23 2012

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          max(a(n-1), numtheory[factorset](n^2+1)[]))
        end:
    seq(a(n), n=1..55);  # Alois P. Heinz, Jan 03 2021
  • Mathematica
    a[n_] := a[n] = If[n == 1, 2, Max[a[n-1], FactorInteger[n^2+1][[-1, 1]]]];
    Table[a[n], {n, 1, 55}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
  • PARI
    a(m) = {for (n=1, m, f = factor(prod(x=1, n, x^2+1)); print1(f[length(f~), 1], ", "););}

A253596 Numbers k such that A002313(m) is the greatest prime divisor of k^2 + 1 and A002313(m+1) is the greatest prime divisor of (k+1)^2 + 1 for some m.

Original entry on oeis.org

1, 7, 31, 293, 1936, 2244, 4158, 5744, 11573, 25242, 285202, 339354
Offset: 1

Views

Author

Michel Lagneau, Jan 05 2015

Keywords

Comments

A002313 contains the primes congruent to 1 or 2 (mod 4).
The corresponding indices m in A002313 are 1, 2, 6, 13, 69, 65, 322, 199, 130, 46, 1471, 866, ...
The corresponding primes A002313(m) are 2, 5, 37, 101, 809, 761, 4877, 2777, 1709, 509, 26821, 14957, ...

Examples

			31 is in the sequence because 31^2 + 1 = 2*13*37 and 32^2 + 1 = 5*5*41 with the property that 37 = A002313(6) and 41 = A002313(7).
		

Crossrefs

Programs

  • Maple
    with(numtheory): nn:=500000:print(1):
    for n from 1 to nn do:
       p:=n^2+1:x:=factorset(p):n0:=nops(x):p1:=x[n0]:
       q:=(n+1)^2+1:y:=factorset(q):n1:=nops(y):p2:=y[n1]:ii:=0:
         for j from 2 by 2 to 1000 while(ii=0) do:
          pp:=p1+j:
          if type(pp,prime)=true and irem(pp,4)=1
          then
          p3:=pp:ii:=1:
          else
          fi:
        od:
        if p3=p2
        then
        print(n):
         else
         fi:
        od:
  • Mathematica
    lst={};Do[If[Mod[Prime[i],4]==1||Mod[Prime[i],4]==2,AppendTo[lst,Prime[i]]],{i,1,1000}];Do[Do[If[FactorInteger[n^2+1][[-1]][[1]]==Part[lst,j]&&FactorInteger[(n+1)^2+1][[-1]][[1]]==Part[lst,j+1],Print[n]],{n,1,20000}],{j,1,999}]

A258840 a(n) is the least integer k such that there are n values of i <= k for which gpf(i^2 + 1) = gpf(k^2 + 1), where gpf(x) is the greatest prime factor of x.

Original entry on oeis.org

1, 3, 7, 38, 47, 157, 302, 327, 515, 616, 697, 798, 818, 1303, 2818, 3141, 3323, 5648, 6962, 9193, 9872, 13213, 13747, 15445, 16271, 17149, 18263, 20491, 20727, 24389, 26915, 29078, 31867, 37848, 38007, 40182, 41508, 43328, 46349, 55025, 62258, 63133, 66893
Offset: 1

Views

Author

Michel Lagneau, Jun 12 2015

Keywords

Comments

A014442(n) gives the largest prime factor of n^2 + 1.
The primes of the sequence are 3, 7, 47, 157, 1303, 3323, 46349, ...
The corresponding sequence Gpf(a(n)^2+1) is 2, 5, 5, 17, 17, 29, 37, 37, 101, 101, 101, 101, 101, 101, 101, 101, 101, 97, 97, 97, 97, 401, 349, 389, 557, 557, 557, 557, 557, 421, 421, 421, 557, ... and it is interesting to observe the frequency of repetitions for the numbers 5, 17, 37, 97, 101, 557, ...

Examples

			a(3) = 7 because gpf(7^2 + 1) = gpf(3^2 + 1) = gpf(2^2 + 1) = 5 => 3 occurrences.
a(4) = 38 because gpf(38^2 + 1) = gpf(21^2 + 1) = gpf(13^2 + 1) = gpf(4^2 + 1) = 17 => 4 occurrences.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=70000:T:=array(1..nn):k:=0:kk:=1:
    for m from 1 to nn do:
    x:=factorset(m^2+1):n1:=nops(x):p:=x[n1]:k:=k+1:T[k]:=p:
    od:
    for n from 1 to 43 do:jj:=0:for k from kk to nn while(jj=0) do:
      q:=T[k]:ii:=0:jj:=0:
        for i from 1 to k do:
          if T[i]=q then ii:=ii+1:
          else
          fi:
        od:if ii=n then jj:=1:kk:=k:
        printf ( "%d %d \n",n,k):else fi:
      od:od:
  • PARI
    gpf(n) = my(f=factor(n^2+1)); f[#f~,1];
    nboc(k) = my(gpfk = gpf(k)); sum(i=1, k, gpf(i) == gpfk);
    a(n) = my(k = 1); while (nbo(k) != n, k++); k; \\ Michel Marcus, Jun 12 2015

A339315 a(n) is the smallest number k such that k^2+1 divided by its largest prime factor is equal to F(2*n-1) for n > 0, or 0 if no such k exists, where F(n) is the Fibonacci sequence.

Original entry on oeis.org

1, 3, 8, 34, 55, 144, 610, 233, 12166, 2584, 4181, 68260, 46368, 75025, 3917414, 464656, 1346269, 16349962
Offset: 1

Views

Author

Michel Lagneau, Nov 30 2020

Keywords

Comments

a(n) is the smallest number k such that A248516(k) = A001519(n) for n > 0, or 0 if no such k exists, where A001519(n) = F(2*n-1) (bisection of the Fibonacci sequence), with F(n) = A000045(n).
We observe that a(2 + 3m) = A001519(1 + 3m) = A000045(1 + 6m) for m = 2, 3, 4, 5. For n = 6, this property no longer works.
For k > 0, a(3k - 1) is odd, a(3k) and a(3k+1) are even.
We observe that a(n)^2 + 1 is the product of two prime Fibonacci numbers for n = 2, 3, 4, 6, 7.
The first 18 terms of the sequence are Fibonacci numbers, except a(9), a(12), a(15), a(16) and a(18).
The corresponding sequence b(n) = (a(n)^2+1)/ A001519(n) is 2, 5, 13, 89, 89, 233, 1597, 89, 92681, 1597, 1597, 162593, 28657, 28657, 29842993, 160373, 514229. We observe that a majority of terms of b(n) are prime Fibonacci numbers, except b(9), b(12), b(15) and b(16).

Examples

			a(4) = 34 because 34^2 + 1 = 13*89 = 1157, and 1157/89 = 13 = A248516(34) = A001519(4).
A curiosity: a(22) = 1134903170 = F(45) with F(45)^2 + 1 = F(43)*F(47) where F(43) and F(47) are prime Fibonacci numbers.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):
    nn:=100:n0:=20:
    for n from 1 to n0 do:
      ii:=0:
      for m from 1 to 10^10 while(ii=0) do:
       x:=m^2+1:y:=factorset(x):n1:=nops(y):
       z:=x/y[n1]:
        if z = fibonacci(2*n-1)
         then
         ii:=1:printf(`%d %d \n`,n,m):
         else
        fi:
      od:
    od:
  • PARI
    a(n) = {my(k=1, f=fibonacci(2*n-1)); while ((k^2+1)/vecmax(factor(k^2+1)[,1]) != f, k++); k;} \\ Michel Marcus, Nov 30 2020

A348594 Numbers m such that m^2 + 1 = p*q with p, q primes and m = (p + q)/2 - 1.

Original entry on oeis.org

8, 50, 1250, 1800, 2450, 9800, 14450, 20000, 24200, 101250, 105800, 135200, 162450, 168200, 204800, 304200, 336200, 451250, 480200, 490050, 530450, 696200, 924800, 966050, 1008200, 1125000, 1155200, 1428050, 1805000, 2332800, 2420000, 2576450, 2761250, 2832200
Offset: 1

Views

Author

Michel Lagneau, Jan 26 2022

Keywords

Comments

Subsequence of A085722.
The corresponding pairs (p, q) of the sequence are (5, 13), (41, 61), (1201, 1301), (1741, 1861), (2381, 2521), (9661, 9941), (14281, 14621), (19801, 20201), (23981, 24421), (100801, 101701), ...
Property:
a(n) = 2* A109306(n)^2 and a(n) == 0 (mod 50) for n > 1. Proof:
From the relations:
(1) m^2 + 1 = p*q
(2) (p + q)/2 = m + 1
We obtain:
(3) p = m + 1 - sqrt(8*m)/2
(4) q = m + 1 + sqrt(8*m)/2
with m = 2*k^2 we obtain:
(5) p = k^2 + (k-1)^2
(6) q = k^2 + (k+1)^2
For n > 1, A109306(n) == 0 (mod 5) => 2*A109306(n)^2 == 0 (mod 50).

Examples

			50 = 2*5^2 is in the sequence because 50^2 + 1 = 41*61 with 50 = (41 + 61)/2 - 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=250:printf(`%d, `,8):
    for k from 0 to nn do:
    n:=50*k^2:d:=factorset(n^2+1):
      if bigomega(n^2+1)=2 and (d[1]+d[2])/2 - 1 = n
       then
        printf(`%d, `,n):
        else
      fi:
    od:
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n^2 + 1]}, f[[;; , 2]] == {1, 1} && f[[1, 1]] + f[[2, 1]] == 2*n + 2]; Select[Range[3*10^5], q] (* Amiram Eldar, Jan 26 2022 *)
  • PARI
    isok(m) = my(x); if (bigomega(x=m^2+1)==2, my(f=factor(x)); (f[1,1]+f[2,1] == 2*(m+1))); \\ Michel Marcus, Jan 26 2022
Previous Showing 41-46 of 46 results.