cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A289873 Related to perfect Wichmann rulers: a(n) = ( n^2 - (mod(n, 6) - 3)^2 ) / 3.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 21, 27, 33, 39, 45, 55, 65, 75, 85, 95, 105, 119, 133, 147, 161, 175, 189, 207, 225, 243, 261, 279, 297, 319, 341, 363, 385, 407, 429, 455, 481, 507, 533, 559, 585, 615, 645, 675, 705, 735, 765, 799, 833, 867, 901, 935, 969, 1007, 1045, 1083, 1121, 1159, 1197, 1239, 1281, 1323, 1365
Offset: 2

Views

Author

Hugo Pfoertner, Jul 14 2017

Keywords

Comments

Leading term in length A289761 of longest perfect Wichmann ruler with n segments.

Crossrefs

A014641 is a subsequence.

Programs

  • Maple
    p := (n, x) -> (2*n - 3*(1 + x))*(1 + x):
    a := n -> p(n, 2*floor(n/6)):
    seq(a(n), n = 2..64); # Peter Luschny, Jul 14 2017
  • Mathematica
    Table[(n^2 - (Mod[n, 6] - 3)^2)/3, {n, 2, 64}] (* Michael De Vlieger, Jul 14 2017 *)
  • Python
    def A289873(n): return (n+(m:=n%6))*(n-(k:=m-3))//3+k-n # Chai Wah Wu, Jun 20 2024

Formula

a(n) = A289761(n) - n.
G.f.: x^2*(1 + x - x^2)*(1 + x^2 - x^3 + 2*x^4 + x^5) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) (conjectured). - Colin Barker, Jul 14 2017
Can be seen as a family of parabolas p_{n}(x) = (2*n - 3*(1 + x))*(1 + x) evaluated at x = 2*floor(n/6). - Peter Luschny, Jul 14 2017

A329404 Interleave 2*n*(3*n-1), (2*n+1)*(6*n+1) for n >= 0.

Original entry on oeis.org

0, 1, 4, 21, 20, 65, 48, 133, 88, 225, 140, 341, 204, 481, 280, 645, 368, 833, 468, 1045, 580, 1281, 704, 1541, 840, 1825, 988, 2133, 1148, 2465, 1320, 2821, 1504, 3201, 1700, 3605, 1908, 4033, 2128, 4485, 2360, 4961
Offset: 0

Views

Author

Paul Curtz, Nov 13 2019

Keywords

Comments

a(n) + a(n+3) = 21, 21, 69, 69, 153, 153, ...
Hexagonal spiral for A026741:
.
33--17--35--18
/
16 8--17---9--19
/ / \
31 15 5---3---7 10
/ / / \ \
15 7 2 0===1===4==21==>
\ \ \ / / /
29 13 3---1 9 11
\ \ / /
14 6--11---5 23
\ /
27--13--25--12
.
a(n) is the horizontal sequence from 0.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,4,21,20,65},100] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3) + O(x^45))) \\ Colin Barker, Nov 13 2019

Formula

a(n) = n * A165355(n-1).
From Colin Barker, Nov 13 2019: (Start)
G.f.: x*(1 + 4*x + 18*x^2 + 8*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5.
a(n) = (1/4)*(-1)*((-3 + (-1)^n)*n*(-2+3*n)). (End)
From Amiram Eldar, Dec 27 2024: (Start)
Sum_{n>=1} 1/a(n) = Pi/(8*sqrt(3)) + 9*log(3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi/(8*sqrt(3)) - 3*log(3)/8. (End)

A181093 p*(p+2)/3 where p and p+4 are primes.

Original entry on oeis.org

5, 21, 65, 133, 481, 645, 1541, 2133, 3201, 3605, 4033, 5461, 8965, 12545, 16725, 17633, 25761, 31621, 32865, 40833, 48133, 52801, 64533, 69921, 71765, 79381, 83333, 125665, 138245, 151425, 182533, 191521, 197633, 226325, 243105, 246533, 256961, 260485, 274821
Offset: 1

Views

Author

Zak Seidov, Jan 23 2011

Keywords

Comments

For p>3, p == 1 mod 6 and p(p+2) == 0 mod 3, hence, except for the first term, a(n) = subsequence of A014641 Odd octagonal numbers: (2n+1)(6n+1).

Examples

			p=3,p+4=7 are primes and a(1)=3*5/3=3,
p=7,p+4=11 are primes and a(2)=7*9/3=21=A014641(2),
p=13,p+4=17 are primes and a(3)=13*15/3=65=A014641(3).
		

Crossrefs

Cf. A014641.

Programs

  • Mathematica
    # (# + 2)/3 & /@ Select[Prime@Range@140, PrimeQ[# + 4] &]
  • PARI
    {forprime (p=3,10^3,isprime(p+4)&print1(p*(p+2)/3,","))}

Extensions

More terms from Michel Marcus, Mar 04 2014
Previous Showing 11-13 of 13 results.