A015438
Gaussian binomial coefficient [ n,12 ] for q=-13.
Original entry on oeis.org
1, 21633936185161, 507029461102251552321630151, 11807441196984503845077844573952807835871, 275100402115798836253928241395289617394098490488956444, 6409295323626866454933457428954320223001885025904687118646704057084
Offset: 12
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11). -
M. F. Hasler, Nov 03 2012
-
r:=12; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
-
Table[QBinomial[n, 12, -13], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
-
A015438(n,r=12,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,12,-13) for n in range(12,17)] # Zerinvary Lajos, May 28 2009
A015306
Gaussian binomial coefficient [ n,5 ] for q = -3.
Original entry on oeis.org
1, -182, 49777, -11662040, 2869444942, -694405675964, 168973319623174, -41041673208656120, 9974653139743515223, -2423717068608654822146, 588973263031690760850991, -143119691677080990521708240
Offset: 5
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Gaussian binomial coefficients [n,5]:
A015305 (q=-2), this sequence (q=-3),
A015308 (q=-4),
A015309 (q=-5),
A015310 (q=-6),
A015312 (q=-7),
A015313 (q=-8),
A015315 (q=-9),
A015316 (q=-10),
A015317 (q=-11),
A015319 (q=-12),
A015321 (q=-13).
-
List([5..25], n-> (1 -61*(-3)^(n-4) +610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) +61*(-3)^(4*n-10) -(-3)^(5*n-10))/17489920); # G. C. Greubel, Sep 21 2019
-
[(1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920: n in [5..25]]; // G. C. Greubel, Sep 21 2019
-
seq((1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920, n=5..25); # G. C. Greubel, Sep 21 2019
-
Table[QBinomial[n, 5, -3], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920 \\ G. C. Greubel, Sep 21 2019
-
[gaussian_binomial(n,5,-3) for n in range(5,17)] # Zerinvary Lajos, May 27 2009
A015308
Gaussian binomial coefficient [ n,5 ] for q = -4.
Original entry on oeis.org
1, -819, 894621, -901984419, 927257668701, -948584595081123, 971588061067577437, -994845394688060798883, 1018737244037427165087837, -1043182954580986851130914723, 1068220365220113899181567068253
Offset: 5
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Gaussian binomial coefficients [n,5]:
A015305 (q=-2),
A015306(q=-3), this sequence (q=-4),
A015309 (q=-5),
A015310 (q=-6),
A015312 (q=-7),
A015313 (q=-8),
A015315 (q=-9),
A015316 (q=-10),
A015317 (q=-11),
A015319 (q=-12),
A015321 (q=-13).
-
List([5..25], n-> (1 -205*(-4)^(n-4) +3485*(-4)^(2*n-7) -3485*(-4)^(3*n-9) +205*(-4)^(4*n-10) -(-4)^(5*n-10))/1274203125); # G. C. Greubel, Sep 21 2019
-
r:=5; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
-
seq((1 -205*(-4)^(n-4) +3485*(-4)^(2*n-7) -3485*(-4)^(3*n-9) +205*(-4)^(4*n-10) -(-4)^(5*n-10))/1274203125, n=5..25); # G. C. Greubel, Sep 21 2019
-
Table[QBinomial[n, 5, -4], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
a(n) = (1 -205*(-4)^(n-4) +3485*(-4)^(2*n-7) -3485*(-4)^(3*n-9) +205*(-4)^(4*n-10) -(-4)^(5*n-10))/1274203125; \\ G. C. Greubel, Sep 21 2019
-
[gaussian_binomial(n,5,-4) for n in range(5,16)] # Zerinvary Lajos, May 27 2009