cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A015770 Numbers k such that phi(k) divides sigma_12(k).

Original entry on oeis.org

1, 2, 3, 6, 249, 498, 118578, 99295058, 297885174, 4005374907
Offset: 1

Views

Author

Keywords

Comments

sigma_12(n) = A013960(n) is the sum of the 12th powers of the divisors of n.
sigma(24j+12,x)/phi(x) is an integer for j in the range 0, ..., 500 for x = 1, 2, 3, 6, 249, 498, 118578 and supposed to hold for possible larger terms of A015770 and all j. Compare with comments to A015759, A091285, A015762. - Labos Elemer, May 27 2004
a(11) > 5*10^9. - Giovanni Resta, Aug 22 2017
All known terms of A015762 (and also of this sequence) are squarefree. In that case, sigma_12(x)/sigma_4(x) = Product_{primes p|x} (p^8 - p^4 + 1) is an integer, so x is also in this sequence. - M. F. Hasler, Aug 22 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[1200000],Divisible[DivisorSigma[12,#],EulerPhi[#]]&] (* Harvey P. Dale, Dec 04 2015 *)

Extensions

Corrected by Harvey P. Dale, Dec 04 2015
Offset corrected by and a(8)-a(10) from Giovanni Resta, Aug 22 2017

A015773 Numbers k such that phi(k) | sigma_14(k).

Original entry on oeis.org

1, 2, 3, 6, 22, 33, 66, 118, 177, 354, 454, 750, 1298, 1362, 1372, 1947, 3894, 4116, 4994, 8706, 14982, 15092, 26786, 33906, 44250, 45276, 56750, 65542, 77858, 80358, 98961, 116787, 170250, 171500, 196626, 197922, 233574, 242844
Offset: 1

Views

Author

Keywords

Comments

sigma_14(k) is the sum of the 14th powers of the divisors of k.

Crossrefs

Programs

  • Mathematica
    Select[Range[250000],Divisible[DivisorSigma[14,#],EulerPhi[#]]&] (* Harvey P. Dale, Feb 02 2019 *)

A015764 Numbers n such that phi(n) | sigma_6(n).

Original entry on oeis.org

1, 2, 3, 6, 22, 33, 66, 262, 750, 786, 8646, 56946, 222386, 626406, 667158, 737286, 1223123, 2446246, 2939046, 3669369, 6804006, 7338738, 27798250, 31684246, 41697375, 44970486, 53817126, 62128086, 76745867, 83394750, 95052738, 139991987, 153491734, 174684203
Offset: 1

Views

Author

Keywords

Comments

sigma_6(n) is the sum of the 6th powers of the divisors of n.

Crossrefs

Programs

  • Maple
    with(numtheory): A015764:=n->`if`(sigma[6](n) mod phi(n) = 0,n,NULL): seq(A015764(n), n=1..10^5); # Wesley Ivan Hurt, Mar 10 2015
  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[6, #], EulerPhi[#]] &] (* Amiram Eldar, Jan 20 2019 *)

Extensions

More terms from Labos Elemer, May 03 2002
a(23)-a(34) from Amiram Eldar, Jan 20 2019

A015766 Numbers k such that phi(k) | sigma_8(k).

Original entry on oeis.org

1, 2, 3, 6, 19689, 39378
Offset: 1

Views

Author

Keywords

Comments

sigma_8(n) is the sum of the 8th powers of the divisors of n.
sigma(16j+8,x)/phi(x) is an integer for j = 0, ..., 500 and 6 actual terms of this sequence. Compare to A015759, A015762, A015770 and A091285. - Labos Elemer, May 27 2004
No additional terms up to 5 million. - Harvey P. Dale, Jan 31 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[40000],Divisible[DivisorSigma[8,#],EulerPhi[#]]&] (* Harvey P. Dale, Jan 31 2016 *)

A078538 Smallest k > 6 such that sigma_n(k)/phi(k) is an integer.

Original entry on oeis.org

12, 22, 12, 249, 12, 22, 12, 19689, 12, 22, 12, 249, 12, 22, 12
Offset: 1

Views

Author

Labos Elemer, Nov 29 2002

Keywords

Comments

For n = 16, 48, 64, and 80 the solutions are hard to find, exceed 10^6 or even 10^7.
If a(16) exists, it is greater than 2^32. Terms a(17) to a(47) are 12, 22, 12, 249, 12, 22, 12, 9897, 12, 22, 12, 249, 12, 22, 12, 2566, 12, 22, 12, 249, 12, 22, 12, 19689, 12, 22, 12, 249, 12, 22, 12. - T. D. Noe, Dec 08 2013

Examples

			These terms appear as 5th entries in A020492, A015759-A015774. k = {1, 2, 3, 6} are solutions to Min{k : Mod[sigma[n, k], phi[k]]=0}. First nontrivial solutions are larger: for odd n, k = 12 is solution; for even powers larger numbers arise like 22, 249, 9897, 19689, etc. Certain power-sums of divisors proved to be hard to find.
		

Crossrefs

Programs

  • Mathematica
    f[k_, x_] := DivisorSigma[k, x]/EulerPhi[x]; Table[k=7; While[!IntegerQ[f[n, k]], k++]; k, {n, 1, 15}] (* corrected by Jason Yuen, Jun 27 2025 *)
  • PARI
    ok(n,k)=my(f=factor(n), r=sigma(f,k)/eulerphi(f)); r>=7 && denominator(r)==1
    a(n)=my(k=7); while(!ok(k, n), k++); k \\ Charles R Greathouse IV, Nov 27 2013
    
  • Python
    from sympy import divisors, totient as phi
    def a(n):
        k, pk = 7, phi(7)
        while sum(pow(d, n, pk) for d in divisors(k, generator=True))%pk != 0:
            k += 1
            pk = phi(k)
        return k
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Dec 22 2021

A078540 Least non-balanced x (i.e., not in A020492) such that sigma(p(n),x)/phi(x) is an integer, where p(n) = n-th prime.

Original entry on oeis.org

22, 38, 46, 295, 235, 749, 3687, 6128, 1415, 4254, 10451, 8351, 334, 4511, 3398, 1286, 148870, 11015, 35519, 10239, 14072, 76088, 5991, 718, 11654, 30761, 7431, 20993, 700654, 22169, 5095, 4198, 27415, 26744, 14318, 48368, 180878, 16991, 173123, 4166, 5033, 7246
Offset: 1

Views

Author

Labos Elemer, Dec 02 2002

Keywords

Examples

			n=6: prime(6)=13, cases of sigma(13,x)/phi(x) is an integer are listed in A015771: 1, 2, 3, 6, 12, etc.; the first term which is non-balanced, i.e., not in A020492, is a(6) = 749 = A020492(31); a(29) = 700854 and a(45) = 510759 are remarkably large.
		

Crossrefs

Programs

  • Mathematica
    Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[Prime[k], n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, Prime[k]}]; fl=0], {n, 1, 1000000}], {k, 1, 100}]
  • PARI
    lista(nmax) = {my(ps = primes(nmax), pmax = ps[#ps], v = vector(pmax), c = 0, k = 2, f, e, p); while(c < nmax, f = factor(k); e = eulerphi(f); if(sigma(f) % e > 0, for(i = 1, nmax, p = ps[i]; if(!(sigma(f, p) % e) && v[p] == 0, c++; v[p] = k))); k++); for(i = 1, pmax, if(v[i] > 0, print1(v[i], ", ")));} \\ Amiram Eldar, Aug 29 2024

Formula

a(n) = min{x; A000203(x) mod A000005(x) = 0 but sigma(A000040(n), x) mod phi(x) is not 0}.

Extensions

a(18) corrected and more terms added by Amiram Eldar, Aug 29 2024
Previous Showing 11-16 of 16 results.