A015770
Numbers k such that phi(k) divides sigma_12(k).
Original entry on oeis.org
1, 2, 3, 6, 249, 498, 118578, 99295058, 297885174, 4005374907
Offset: 1
Cf.
A020492,
A015759,
A015761,
A015762,
A015763,
A015764,
A015765,
A015766,
A015767,
A015768,
A015769,
A015771,
A015773,
A015774,
A094470.
-
Select[Range[1200000],Divisible[DivisorSigma[12,#],EulerPhi[#]]&] (* Harvey P. Dale, Dec 04 2015 *)
A015773
Numbers k such that phi(k) | sigma_14(k).
Original entry on oeis.org
1, 2, 3, 6, 22, 33, 66, 118, 177, 354, 454, 750, 1298, 1362, 1372, 1947, 3894, 4116, 4994, 8706, 14982, 15092, 26786, 33906, 44250, 45276, 56750, 65542, 77858, 80358, 98961, 116787, 170250, 171500, 196626, 197922, 233574, 242844
Offset: 1
Cf.
A020492,
A015759,
A015761,
A015762,
A015763,
A015764,
A015765,
A015766,
A015767,
A015768,
A015769,
A015770,
A015771,
A015774,
A094470.
-
Select[Range[250000],Divisible[DivisorSigma[14,#],EulerPhi[#]]&] (* Harvey P. Dale, Feb 02 2019 *)
A015764
Numbers n such that phi(n) | sigma_6(n).
Original entry on oeis.org
1, 2, 3, 6, 22, 33, 66, 262, 750, 786, 8646, 56946, 222386, 626406, 667158, 737286, 1223123, 2446246, 2939046, 3669369, 6804006, 7338738, 27798250, 31684246, 41697375, 44970486, 53817126, 62128086, 76745867, 83394750, 95052738, 139991987, 153491734, 174684203
Offset: 1
Cf.
A020492,
A015759,
A015761,
A015762,
A015763,
A015765,
A015766,
A015767,
A015768,
A015769,
A015770,
A015771,
A015773,
A015774,
A094470.
-
with(numtheory): A015764:=n->`if`(sigma[6](n) mod phi(n) = 0,n,NULL): seq(A015764(n), n=1..10^5); # Wesley Ivan Hurt, Mar 10 2015
-
Select[Range[10^5], Divisible[DivisorSigma[6, #], EulerPhi[#]] &] (* Amiram Eldar, Jan 20 2019 *)
A015766
Numbers k such that phi(k) | sigma_8(k).
Original entry on oeis.org
1, 2, 3, 6, 19689, 39378
Offset: 1
-
Select[Range[40000],Divisible[DivisorSigma[8,#],EulerPhi[#]]&] (* Harvey P. Dale, Jan 31 2016 *)
A078538
Smallest k > 6 such that sigma_n(k)/phi(k) is an integer.
Original entry on oeis.org
12, 22, 12, 249, 12, 22, 12, 19689, 12, 22, 12, 249, 12, 22, 12
Offset: 1
These terms appear as 5th entries in A020492, A015759-A015774. k = {1, 2, 3, 6} are solutions to Min{k : Mod[sigma[n, k], phi[k]]=0}. First nontrivial solutions are larger: for odd n, k = 12 is solution; for even powers larger numbers arise like 22, 249, 9897, 19689, etc. Certain power-sums of divisors proved to be hard to find.
-
f[k_, x_] := DivisorSigma[k, x]/EulerPhi[x]; Table[k=7; While[!IntegerQ[f[n, k]], k++]; k, {n, 1, 15}] (* corrected by Jason Yuen, Jun 27 2025 *)
-
ok(n,k)=my(f=factor(n), r=sigma(f,k)/eulerphi(f)); r>=7 && denominator(r)==1
a(n)=my(k=7); while(!ok(k, n), k++); k \\ Charles R Greathouse IV, Nov 27 2013
-
from sympy import divisors, totient as phi
def a(n):
k, pk = 7, phi(7)
while sum(pow(d, n, pk) for d in divisors(k, generator=True))%pk != 0:
k += 1
pk = phi(k)
return k
print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Dec 22 2021
A078540
Least non-balanced x (i.e., not in A020492) such that sigma(p(n),x)/phi(x) is an integer, where p(n) = n-th prime.
Original entry on oeis.org
22, 38, 46, 295, 235, 749, 3687, 6128, 1415, 4254, 10451, 8351, 334, 4511, 3398, 1286, 148870, 11015, 35519, 10239, 14072, 76088, 5991, 718, 11654, 30761, 7431, 20993, 700654, 22169, 5095, 4198, 27415, 26744, 14318, 48368, 180878, 16991, 173123, 4166, 5033, 7246
Offset: 1
n=6: prime(6)=13, cases of sigma(13,x)/phi(x) is an integer are listed in A015771: 1, 2, 3, 6, 12, etc.; the first term which is non-balanced, i.e., not in A020492, is a(6) = 749 = A020492(31); a(29) = 700854 and a(45) = 510759 are remarkably large.
-
Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[Prime[k], n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, Prime[k]}]; fl=0], {n, 1, 1000000}], {k, 1, 100}]
-
lista(nmax) = {my(ps = primes(nmax), pmax = ps[#ps], v = vector(pmax), c = 0, k = 2, f, e, p); while(c < nmax, f = factor(k); e = eulerphi(f); if(sigma(f) % e > 0, for(i = 1, nmax, p = ps[i]; if(!(sigma(f, p) % e) && v[p] == 0, c++; v[p] = k))); k++); for(i = 1, pmax, if(v[i] > 0, print1(v[i], ", ")));} \\ Amiram Eldar, Aug 29 2024
a(18) corrected and more terms added by
Amiram Eldar, Aug 29 2024
Comments