cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A103599 Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/6.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 10, 16, 29, 59, 140, 400, 1413, 6467, 40261, 361139, 4990906, 114916199, 4833601540
Offset: 1

Views

Author

James R. Buddenhagen, Mar 28 2005

Keywords

Comments

a(22) > 5*10^10. - Robert Price, Dec 10 2013

Crossrefs

Programs

  • Mathematica
    For[n = 1, n ≤ 17, n++, sum = 0; For[k = 1, k ≤ 10^6, k++, sum = sum + 1/Prime[k]; If[sum >= n/6, Print[k]; Break[]]]] (* Robert Price, Dec 09 2013 *)
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/6, m++];
    m, {n, 1, 17}] (* Robert Price, Mar 27 2019 *)

Extensions

a(2)-a(4) and a(19)-a(21) added by Robert Price, Dec 10 2013

A332991 a(n) is the smallest prime power p^k (p prime, k >= 1) such that sum of reciprocals of prime powers up to p^k (prime power harmonic sum) exceeds n.

Original entry on oeis.org

2, 4, 19, 1307, 266655247
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2020

Keywords

Comments

The corresponding indices of a(n) in A246655 are 1, 3, 12, 240, ...

Examples

			a(1) = 4 because 1/2 + 1/3 = 0.8333... < 1 but 1/2 + 1/3 + 1/4 = 1.0833... > 1.
		

Crossrefs

Similar sequences: A002387 (for positive integers), A016088 (for primes), A076751 (for composite numbers), A333004 (for squarefree numbers).
Cf. A246655 (prime powers).

Extensions

a(4) from Daniel Suteu, Mar 05 2020

A333004 a(n) is the smallest squarefree number k such that sum of reciprocals of squarefree numbers up to k (squarefree harmonic sum) exceeds n.

Original entry on oeis.org

1, 2, 5, 26, 130, 670, 3466, 17985, 93179, 482762, 2501013, 12956855, 67125243, 347753857, 1801596939
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2020

Keywords

Comments

The corresponding indices of a(n) in A005117 are 1, 2, 4, 17, 80, 409, 2112, 10936, 56651, 293483, 1520429, ...

Examples

			a(2) = 5 because 1/1 + 1/2 + 1/3 = 1.8333... < 2 but 1/1 + 1/2 + 1/3 + 1/5 = 2.0333... > 2.
		

Crossrefs

Similar sequences: A002387 (for positive integers), A016088 (for primes), A076751 (for composite numbers), A332991 (for prime powers).
Cf. A005117 (squarefree numbers).

Extensions

a(11)-a(14) from Daniel Suteu, Mar 05 2020

A347310 a(n) = smallest k such that Sum_{i=1..k} log(p_i)/p_i >= n, where p_i is the i-th prime.

Original entry on oeis.org

3, 8, 19, 43, 100, 236, 562, 1354, 3300, 8119, 20136, 50302, 126451, 319628, 811829, 2070790, 5302162, 13621745, 35101258, 90696900, 234924747, 609864582, 1586430423, 4134442382, 10793331294, 28221407514, 73898377351
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2021

Keywords

Comments

Suggested by Mertens's theorem that Sum_{p <= x} log(p)/p = log(x) + O(1).

Examples

			a(1) = 3 because log(2)/2 + log(3)/3 + log(5)/5 = 1.034665268989... is the first time the sum is >= 1.
		

References

  • Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Society, 2015. See page 16.

Crossrefs

Programs

  • Mathematica
    Table[k=1;While[Sum[Log@Prime@i/Prime@i,{i,++k}]Giorgos Kalogeropoulos, Sep 08 2021 *)
  • PARI
    a(n) = my(k=0, s=0, p=2); while (s < n, s += log(p)/p; k++; p = nextprime(p+1)); k; \\ Michel Marcus, Sep 06 2021

Formula

a(n) = pi(A347311(n)) = A000720(A347311(n)). - Michel Marcus, Sep 06 2021

Extensions

a(8)-a(16) from Michel Marcus, Sep 06 2021
a(17)-a(23) from Jon E. Schoenfield, Sep 06 2021
a(24)-a(27) from Amiram Eldar, Sep 10 2024

A347311 a(n) is the smallest prime q such that Sum_{primes p <= q} log(p)/p >= n.

Original entry on oeis.org

5, 19, 67, 191, 541, 1487, 4079, 11173, 30559, 83137, 226427, 615919, 1675771, 4556771, 12387481, 33677717, 91558231, 248887319, 676566619, 1839125531, 4999337929, 13589640521, 36940536917, 100415101481, 272957090657, 741974865617, 2016896970001
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2021

Keywords

Comments

Suggested by Mertens's theorem that Sum_{p <= x} log(p)/p = log(x) + O(1).
By Mertens's first theorem we have a(n) = exp(n + B3 + o(1)) = e^n * e^B3 * (1 + o(1)) = (3.79081970129... + o(1)) * e^n, where the constant B3 is exp(A083343). Empirically, based on the first 23 terms, it seems plausible that a(n) ~ e^(n + B3) + c*e^(n/2) where c is very roughly -2. - Jon E. Schoenfield, Sep 06 2021 [edited Sep 19 2021, with thanks to Charles R Greathouse IV for his expertise]

Examples

			a(1) = 5 because log(2)/2 + log(3)/3 + log(5)/5 = 1.034665268989... is the first time the sum is >= 1.
		

References

  • Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Society, 2015. See page 16.

Crossrefs

Programs

  • Mathematica
    Table[i=1;d=Log@Prime@i/Prime@i;While[dGiorgos Kalogeropoulos, Sep 08 2021 *)
  • PARI
    a(n) = my(k=0, s=0, p=2); while (s < n, s += log(p)/p; k++; p = nextprime(p+1)); prime(k); \\ Michel Marcus, Sep 06 2021

Formula

a(n) = prime(A347310(n)). - Michel Marcus, Sep 06 2021

Extensions

a(8)-a(16) from Michel Marcus, Sep 06 2021
a(17)-a(23) from Jon E. Schoenfield, Sep 06 2021
a(24)-a(27) from Amiram Eldar, Sep 10 2024

A103593 Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/3.

Original entry on oeis.org

1, 2, 3, 6, 16, 59, 400, 6467, 361139, 114916199
Offset: 1

Views

Author

James R. Buddenhagen, Mar 28 2005

Keywords

Comments

a(n) <= e^(e^(n/3)), therefore a(10) < 1492725701441. - Stefan Steinerberger, Mar 18 2006
a(11) > 5*10^10. - Robert Price, Dec 10 2013

Crossrefs

Programs

  • Mathematica
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/3, m++];
    m, {n, 1, 10}] (* Robert Price, Mar 27 2019 *)

Extensions

a(10) from Robert Price, Dec 10 2013

A103594 Smallest prime p such that Sum_{primes q <= p} 1/q >= n/3.

Original entry on oeis.org

2, 3, 5, 13, 53, 277, 2741, 64663, 5195977, 2358926351, 12041724518809, 1801241230056600523
Offset: 1

Views

Author

James R. Buddenhagen, Mar 28 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/3, m++];
    Prime[m], {n, 1, 10}] (* Robert Price, Mar 27 2019 *)

Extensions

a(10) from Robert Price, Dec 10 2013
a(11) and a(12) copied from A103600(22) and A016088(4), respectively, by Jon E. Schoenfield, Feb 01 2020

A103595 Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/4.

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 21, 59, 231, 1413, 15474, 361139, 22347214, 4833601540
Offset: 1

Views

Author

James R. Buddenhagen, Mar 28 2005

Keywords

Comments

a(15) > 5*10^10. - Robert Price, Dec 10 2013

Crossrefs

Programs

  • Mathematica
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/4, m++];
    m, {n, 1, 14}] (* Robert Price, Mar 27 2019 *)

Extensions

a(1) and a(13)-a(14) from Robert Price, Dec 10 2013

A103596 Smallest prime p such that Sum_{primes q <= p} 1/q >= n/4.

Original entry on oeis.org

2, 2, 3, 5, 11, 29, 73, 277, 1453, 11789, 169751, 5195977, 420055319, 118185163069
Offset: 1

Views

Author

James R. Buddenhagen, Mar 28 2005

Keywords

Comments

a(14) > pi(5*10^5). - Robert Price, Dec 10 2013

Crossrefs

Programs

  • Mathematica
    For[n = 1, n ≤ 17, n++, sum = 0; For[k = 1, k ≤ 10^6, k++, sum = sum + 1/Prime[k]; If[sum >= n/4, Print[Prime[k]]; Break[]]]]
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/4, m++];
    Prime[m], {n, 1, 14}] (* Robert Price, Mar 27 2019 *)

Extensions

a(1) added by Robert Price, Dec 10 2013
a(13)-a(14) from Robert Price, Dec 10 2013

A103597 Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/5.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 7, 13, 25, 59, 170, 644, 3402, 27178, 361139, 8947437, 474314304
Offset: 1

Views

Author

James R. Buddenhagen, Mar 28 2005

Keywords

Comments

a(18) > 5*10^10. - Robert Price, Dec 10 2013

Crossrefs

Programs

  • Mathematica
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/5, m++];
    m, {n, 1, 17}] (* Robert Price, Mar 27 2019 *)

Extensions

a(2)-a(3) and a(16)-a(17) from Robert Price, Dec 10 2013
Previous Showing 11-20 of 24 results. Next