cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A017203 a(n) = (9*n + 3)^7.

Original entry on oeis.org

2187, 35831808, 1801088541, 21870000000, 137231006679, 587068342272, 1954897493193, 5455160701056, 13348388671875, 29509034655744, 60170087060757, 114868566764928, 207616015289871, 358318080000000, 594467302491009, 953133216331392, 1483273860320763, 2248392813428736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^7 = 3^7 * A016783(n).
Sum_{n>=0} 1/a(n) = 28*Pi^7/(215233605*sqrt(3)) + 1093*zeta(7)/4782969. (End)

A017205 a(n) = (9*n + 3)^9.

Original entry on oeis.org

19683, 5159780352, 794280046581, 19683000000000, 208728361158759, 1352605460594688, 6351461955384057, 23762680013799936, 75084686279296875, 208215748530929664, 520411082988487293, 1195092568622310912, 2558036924386500591, 5159780352000000000, 9892530380752880769
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^9 = 3^9 * A016785(n).
Sum_{n>=0} 1/a(n) = 1618*Pi^9/(1098337086315*sqrt(3)) + 9841*zeta(9)/387420489. (End)

A017207 a(n) = (9*n + 3)^11.

Original entry on oeis.org

177147, 743008370688, 350277500542221, 17714700000000000, 317475837322472439, 3116402981210161152, 20635899893042801193, 103510234140112521216, 422351360321044921875, 1469170321634239709184, 4501035456767426597157, 12433743083946522728448, 31517572945366073781711
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(9*n+3)^11: n in [0..15]]; // Vincenzo Librandi, Jul 23 2011
  • Mathematica
    Table[(9*n + 3)^11, {n, 0, 15}] (* Amiram Eldar, Oct 03 2024 *)

Formula

From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^11 = 3^11 * A016787(n).
Sum_{n>=0} 1/a(n) = 7388*Pi^11/(444826519957575*sqrt(3)) + 88573*zeta(11)/31381059609. (End)

A101468 Triangle read by rows: T(n,k)=(n+1-k)*(3*k+1).

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 4, 12, 14, 10, 5, 16, 21, 20, 13, 6, 20, 28, 30, 26, 16, 7, 24, 35, 40, 39, 32, 19, 8, 28, 42, 50, 52, 48, 38, 22, 9, 32, 49, 60, 65, 64, 57, 44, 25, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28, 11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, 12, 44, 70, 90, 104, 112, 114
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 21 2005

Keywords

Comments

The triangle is generated from the product A*B
of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
... and B =
1 0 0 0...
1 4 0 0...
1 4 7 0...
1 4 7 10...
...
Row sums give pentagonal pyramidal numbers A002411 T(n+0,0)= 1*n=A000027(n) T(n+0,1)= 4*n=A008586(n) T(n+1,2)= 7*n=A008589(n) T(n+2,3)=10*n=A008592(n) ...
so for example T(n+1,n-0)=6*n+2=A016933(n) T(n+1,n-1)=9*n+3=A017197(n) T(n+2,n-1)=12*n+4=A017569(n)
T(n,0)*T(n,1) = A033996(n) (8 times triangular numbers)
T(n,n)*T(n,0) = A000567(n+1) (Octagonal numbers) etc.

Examples

			Triangle begins:
1,
2,  4,
3,  8,  7,
4,  12, 14, 10,
5,  16, 21, 20, 13,
6,  20, 28, 30, 26, 16,
7,  24, 35, 40, 39, 32, 19,
8,  28, 42, 50, 52, 48, 38, 22,
9,  32, 49, 60, 65, 64, 57, 44, 25,
10, 36, 56, 70, 78, 80, 76, 66, 50, 28,
11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, etc.
[_Bruno Berselli_, Feb 10 2014]
		

Crossrefs

Cf. A095871 (product B*A), A002411.

Programs

  • Mathematica
    t[n_, k_] := If[n < k, 0, (3*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 21 2005 *)
  • PARI
    T(n,k)=if(k>n,0,(n-k+1)*(3*k+1)) for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())

A168410 a(n) = 3 + 9*floor(n/2).

Original entry on oeis.org

3, 12, 12, 21, 21, 30, 30, 39, 39, 48, 48, 57, 57, 66, 66, 75, 75, 84, 84, 93, 93, 102, 102, 111, 111, 120, 120, 129, 129, 138, 138, 147, 147, 156, 156, 165, 165, 174, 174, 183, 183, 192, 192, 201, 201, 210, 210, 219, 219, 228, 228, 237, 237, 246, 246, 255, 255
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Crossrefs

Programs

  • Magma
    [3+9*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[3 + 9 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[3 (1 + 3 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)

Formula

a(n) = 9*n - a(n-1) - 3, with n>1, a(1)=3.
G.f.: 3*x*(1 + 3*x - x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 10 2011
a(n) = 3*A168233(n). - R. J. Mathar, Jul 10 2011
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013
E.g.f.: (3/4)*(3 - 4*exp(x) + (6*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 21 2016

Extensions

New definition by Vincenzo Librandi, Sep 19 2013

A361226 Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0

Views

Author

Paul Curtz, Mar 05 2023

Keywords

Comments

The main diagonal is A002414.
The first upper diagonal is A160378(n+1).
The antidiagonals sums are A034827(n+2).
b(n) = (A034827(n+3) = 0, 2, 10, 30, 70, ...) - (A002414(n) = 0, 1, 9, 30, 70, ...) = 0, 1, 1, 0, 0, 5, 21, 56, ... .
b(n+2) = A299120(n). b(n+4) = A033275(n). b(n+4) - b(n) = A002492(n).

Examples

			The rows are
  0, 0,  1,  3,  6,  10,  15,  21, ...   = A161680
  0, 1,  5, 12, 22,  35,  51,  70, ...   = A000326
  0, 2,  9, 21, 38,  60,  87, 119, ...   = A005476
  0, 3, 13, 30, 54,  85, 123, 168, ...   = A022264
  0, 4, 17, 39, 70, 110, 159, 217, ...   = A022266
  ... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
  0
  0   0
  0   1   1
  0   2   5   3
  0   3   9  12   6
  0   4  13  21  22  10
  0   5  17  30  38  35  15
  ... .
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
  • PARI
    a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
    
  • Python
    # Seen as a triangle:
    from functools import cache
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [0]
        r = Trow(n - 1)
        return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
    for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023

Formula

Take successively sequences n*(n-1)/2, n*(3*n-1)/2, n*(5*n-1)/2, ... listed in the EXAMPLE section.
G.f.: y*(x + y)/((1 - y)^3*(1 - x)^2). - Stefano Spezia, Mar 06 2023
E.g.f.: exp(x+y)*y*(2*x + y + 2*x*y)/2. - Stefano Spezia, Feb 21 2024
Previous Showing 21-26 of 26 results.