A017203
a(n) = (9*n + 3)^7.
Original entry on oeis.org
2187, 35831808, 1801088541, 21870000000, 137231006679, 587068342272, 1954897493193, 5455160701056, 13348388671875, 29509034655744, 60170087060757, 114868566764928, 207616015289871, 358318080000000, 594467302491009, 953133216331392, 1483273860320763, 2248392813428736
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
A017205
a(n) = (9*n + 3)^9.
Original entry on oeis.org
19683, 5159780352, 794280046581, 19683000000000, 208728361158759, 1352605460594688, 6351461955384057, 23762680013799936, 75084686279296875, 208215748530929664, 520411082988487293, 1195092568622310912, 2558036924386500591, 5159780352000000000, 9892530380752880769
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
A017207
a(n) = (9*n + 3)^11.
Original entry on oeis.org
177147, 743008370688, 350277500542221, 17714700000000000, 317475837322472439, 3116402981210161152, 20635899893042801193, 103510234140112521216, 422351360321044921875, 1469170321634239709184, 4501035456767426597157, 12433743083946522728448, 31517572945366073781711
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
A101468
Triangle read by rows: T(n,k)=(n+1-k)*(3*k+1).
Original entry on oeis.org
1, 2, 4, 3, 8, 7, 4, 12, 14, 10, 5, 16, 21, 20, 13, 6, 20, 28, 30, 26, 16, 7, 24, 35, 40, 39, 32, 19, 8, 28, 42, 50, 52, 48, 38, 22, 9, 32, 49, 60, 65, 64, 57, 44, 25, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28, 11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, 12, 44, 70, 90, 104, 112, 114
Offset: 0
Triangle begins:
1,
2, 4,
3, 8, 7,
4, 12, 14, 10,
5, 16, 21, 20, 13,
6, 20, 28, 30, 26, 16,
7, 24, 35, 40, 39, 32, 19,
8, 28, 42, 50, 52, 48, 38, 22,
9, 32, 49, 60, 65, 64, 57, 44, 25,
10, 36, 56, 70, 78, 80, 76, 66, 50, 28,
11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, etc.
[_Bruno Berselli_, Feb 10 2014]
-
t[n_, k_] := If[n < k, 0, (3*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 21 2005 *)
-
T(n,k)=if(k>n,0,(n-k+1)*(3*k+1)) for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())
A168410
a(n) = 3 + 9*floor(n/2).
Original entry on oeis.org
3, 12, 12, 21, 21, 30, 30, 39, 39, 48, 48, 57, 57, 66, 66, 75, 75, 84, 84, 93, 93, 102, 102, 111, 111, 120, 120, 129, 129, 138, 138, 147, 147, 156, 156, 165, 165, 174, 174, 183, 183, 192, 192, 201, 201, 210, 210, 219, 219, 228, 228, 237, 237, 246, 246, 255, 255
Offset: 1
-
[3+9*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
-
Table[3 + 9 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[3 (1 + 3 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
A361226
Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0
The rows are
0, 0, 1, 3, 6, 10, 15, 21, ... = A161680
0, 1, 5, 12, 22, 35, 51, 70, ... = A000326
0, 2, 9, 21, 38, 60, 87, 119, ... = A005476
0, 3, 13, 30, 54, 85, 123, 168, ... = A022264
0, 4, 17, 39, 70, 110, 159, 217, ... = A022266
... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
0
0 0
0 1 1
0 2 5 3
0 3 9 12 6
0 4 13 21 22 10
0 5 17 30 38 35 15
... .
Cf.
A000004,
A000290,
A000326,
A001477,
A002414,
A005476,
A016777,
A016813,
A016873,
A017017,
A017101,
A017197,
A017581,
A022264,
A022266,
A026741,
A034827,
A160378,
A161680,
A360962.
-
T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
-
a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
-
# Seen as a triangle:
from functools import cache
@cache
def Trow(n: int) -> list[int]:
if n == 0: return [0]
r = Trow(n - 1)
return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023
Comments