cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A347838 Positive numbers that are congruent to 2, 5, or 11 modulo 12.

Original entry on oeis.org

2, 5, 11, 14, 17, 23, 26, 29, 35, 38, 41, 47, 50, 53, 59, 62, 65, 71, 74, 77, 83, 86, 89, 95, 98, 101, 107, 110, 113, 119, 122, 125, 131, 134, 137, 143, 146, 149, 155, 158, 161, 167, 170, 173, 179, 182, 185, 191, 194, 197, 203, 206, 209, 215, 218, 221, 227, 230, 233, 239
Offset: 1

Views

Author

Wolfdieter Lang, Oct 21 2021

Keywords

Comments

This sequence follows from the first column sequence of the array A347834, namely A047529 ({1,3,7} (mod 8)), as given in the formula below.
Together with A017617, the positive integers congruent to 8 modulo 12, one obtains A016789, the positive integers congruent to 2 modulo 3. See the array A347839.

Crossrefs

Programs

  • Mathematica
    Map[(3 # + 1)/2 &, LinearRecurrence[{1, 0, 1, -1}, {1, 3, 7, 9}, 60]] (* Michael De Vlieger, Oct 21 2021 *)

Formula

a(n) = (3*A047529(n) + 1)/2.
Trisection: a(3*k+1) = 2 + 12*k, a(3*k+2) = 5 + 12*k, a(3*k+3) = 11 + 12*k, or with a(3*k) = -1 + 12*k for k >= 0.
O.g.f. with a(0) =-1: G(x) = (-1 + 3*x + 3*x^2 + 7*x^3)/((1 - x)*(1 - x^3)) = -6/(1-x) + 4/(1-x)^2 + (1 + x)/(1 + x + x^2). Note that (1 - x)*(1 - x^3) = (1-x)^2*(1 + x + x^2) = 1 - x - x^3 + x^4.
a(n) = a(n-1) + a(n-3) - a(n-4), for n >= 4, given a(n) for 0..3, with a(0) = -1.
a(n) = 2*b(n) + 3*b(n-1) + 6*b(n-2) + b(n-3), with b(n) = floor((n+2)/3) = A002264(n+2).
a(n) = -1 + 3*n + 3*floor(n/3) (from the partial fraction decomposition of G).
E.g.f.: 1 + 2*exp(x)*(2*x - 1) + exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Dec 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = ((sqrt(2)+1)*Pi + sqrt(3)*log(sqrt(3)+2) + sqrt(6)*log(5-2*sqrt(6)))/12. - Amiram Eldar, Dec 30 2021

A126562 Number of intersections of at least four edges in a cube of n X n X n smaller cubes.

Original entry on oeis.org

0, 7, 32, 81, 160, 275, 432, 637, 896, 1215, 1600, 2057, 2592, 3211, 3920, 4725, 5632, 6647, 7776, 9025, 10400, 11907, 13552, 15341, 17280, 19375, 21632, 24057, 26656, 29435, 32400, 35557, 38912, 42471, 46240, 50225, 54432, 58867, 63536, 68445
Offset: 1

Views

Author

Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 12 2007

Keywords

Comments

a(n-1) is the number of points in a cubic lattice of n^3 equally spaced points from which all the 12*n-16 points on the 12 edges are removed. - Luciano Ancora, Jun 25 2015

Examples

			On a cube made of 3 X 3 X 3 smaller cubes, each of the 6 sides has 4 intersections of four edges and in the center, there are 8 intersections of six edges. 6 * 4 + 8 = 32, which is a(3).
		

Crossrefs

Cf. A017617.

Programs

  • Magma
    [6*(n-1)^2 + (n-1)^3: n in [1..40]]; // Vincenzo Librandi, Jun 27 2015
    
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {0, 7, 32, 81}, 50] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    concat(0, Vec(x^2*(7+4*x-5*x^2)/(1-x)^4 + O(x^50))) \\ Michel Marcus, Jun 26 2015
    
  • Python
    def a(n): return (n**3+3*n**2-9*n+5) # Torlach Rush, May 01 2024

Formula

a(n) = 6*(n-1)^2 + (n-1)^3.
G.f.: x^2*(7+4*x-5*x^2)/(1-x)^4. - Colin Barker, Jul 29 2012
a(n-1) = n^3 - (12*n-16). - Luciano Ancora, Jun 25 2015
Previous Showing 11-12 of 12 results.