cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A017778 Binomial coefficients C(62,n).

Original entry on oeis.org

1, 62, 1891, 37820, 557845, 6471002, 61474519, 491796152, 3381098545, 20286591270, 107518933731, 508271323092, 2160153123141, 8308281242850, 29078984349975, 93052749919920, 273342452889765, 739632519584070, 1849081298960175, 4282083008118300
Offset: 0

Views

Author

Keywords

Comments

Row 62 of A007318.

Crossrefs

Programs

  • Magma
    [Binomial(62,n): n in [0..62]]; // G. C. Greubel, Nov 14 2018
  • Maple
    seq(binomial(62,n), n=0..62); # Nathaniel Johnston, Jun 24 2011
  • Mathematica
    Binomial[62, Range[0,62]] (* G. C. Greubel, Nov 14 2018 *)
    CoefficientList[Series[(1+x)^62,{x,0,20}],x] (* Harvey P. Dale, Aug 11 2024 *)
  • PARI
    vector(62, n, n--; binomial(62,n)) \\ G. C. Greubel, Nov 14 2018
    
  • Sage
    [binomial(62, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
    

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^62.
E.g.f.: 1F1(-62; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017779 Binomial coefficients C(63,n).

Original entry on oeis.org

1, 63, 1953, 39711, 595665, 7028847, 67945521, 553270671, 3872894697, 23667689815, 127805525001, 615790256823, 2668424446233, 10468434365991, 37387265592825, 122131734269895, 366395202809685, 1012974972473835, 2588713818544245, 6131164307078475
Offset: 0

Views

Author

Keywords

Comments

Row 63 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^63.
E.g.f.: 1F1(-63; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017780 Binomial coefficients C(64,n).

Original entry on oeis.org

1, 64, 2016, 41664, 635376, 7624512, 74974368, 621216192, 4426165368, 27540584512, 151473214816, 743595781824, 3284214703056, 13136858812224, 47855699958816, 159518999862720, 488526937079580, 1379370175283520, 3601688791018080
Offset: 0

Views

Author

Keywords

Comments

Row 64 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^64.
E.g.f.: 1F1(-64; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017781 Binomial coefficients C(65,n).

Original entry on oeis.org

1, 65, 2080, 43680, 677040, 8259888, 82598880, 696190560, 5047381560, 31966749880, 179013799328, 895068996640, 4027810484880, 16421073515280, 60992558771040, 207374699821536, 648045936942300, 1867897112363100, 4981058966301600, 12321566916640800
Offset: 0

Views

Author

Keywords

Comments

Row 65 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^65.
E.g.f.: 1F1(-65; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017782 Binomial coefficients C(66,n).

Original entry on oeis.org

1, 66, 2145, 45760, 720720, 8936928, 90858768, 778789440, 5743572120, 37014131440, 210980549208, 1074082795968, 4922879481520, 20448884000160, 77413632286320, 268367258592576, 855420636763836, 2515943049305400, 6848956078664700
Offset: 0

Views

Author

Keywords

Comments

Row 66 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^66.
E.g.f.: 1F1(-66; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017783 Binomial coefficients C(67,n).

Original entry on oeis.org

1, 67, 2211, 47905, 766480, 9657648, 99795696, 869648208, 6522361560, 42757703560, 247994680648, 1285063345176, 5996962277488, 25371763481680, 97862516286480, 345780890878896, 1123787895356412, 3371363686069236, 9364899127970100, 24151581961607100
Offset: 0

Views

Author

Keywords

Comments

Row 67 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^67.
E.g.f.: 1F1(-67; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017784 Binomial coefficients C(68,n).

Original entry on oeis.org

1, 68, 2278, 50116, 814385, 10424128, 109453344, 969443904, 7392009768, 49280065120, 290752384208, 1533058025824, 7282025622664, 31368725759168, 123234279768160, 443643407165376, 1469568786235308, 4495151581425648, 12736262814039336
Offset: 0

Views

Author

Keywords

Comments

Row 68 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^68.
E.g.f.: 1F1(-68; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017785 Binomial coefficients C(69,n).

Original entry on oeis.org

1, 69, 2346, 52394, 864501, 11238513, 119877472, 1078897248, 8361453672, 56672074888, 340032449328, 1823810410032, 8815083648488, 38650751381832, 154603005527328, 566877686933536, 1913212193400684, 5964720367660956, 17231414395464984
Offset: 0

Views

Author

Keywords

Comments

Row 69 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^69.
E.g.f.: 1F1(-69; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017786 Binomial coefficients C(70,n).

Original entry on oeis.org

1, 70, 2415, 54740, 916895, 12103014, 131115985, 1198774720, 9440350920, 65033528560, 396704524216, 2163842859360, 10638894058520, 47465835030320, 193253756909160, 721480692460864, 2480089880334220, 7877932561061640, 23196134763125940
Offset: 0

Views

Author

Keywords

Comments

Row 70 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 14 2018: (Start)
G.f.: (1+x)^70.
E.g.f.: 1F1(-70; 1; -x), where 1F1 is the confluent hypergeometric function. (End)

A017787 Binomial coefficients C(71,n).

Original entry on oeis.org

1, 71, 2485, 57155, 971635, 13019909, 143218999, 1329890705, 10639125640, 74473879480, 461738052776, 2560547383576, 12802736917880, 58104729088840, 240719591939480, 914734449370024, 3201570572795084, 10358022441395860, 31074067324187580
Offset: 0

Views

Author

Keywords

Comments

Row 71 of A007318.

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^71.
E.g.f.: 1F1(-71; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Previous Showing 11-20 of 52 results. Next