cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A373936 Number of compositions of 7*n-4 into parts 6 and 7.

Original entry on oeis.org

0, 0, 0, 1, 5, 15, 35, 70, 126, 211, 342, 573, 1079, 2366, 5733, 14197, 34223, 78832, 173166, 364876, 745066, 1493990, 2985725, 6030652, 12428911, 26199706, 56231526, 121847272, 264270015, 570020037, 1218672066, 2581172411, 5424947523, 11347651254
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n+k, n-4-6*k));

Formula

a(n) = A017847(7*n-4).
a(n) = Sum_{k=0..floor(n/6)} binomial(n+k,n-4-6*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7).
G.f.: x^4*(1-x)^2/((1-x)^7 - x^6).
a(n) = A373937(n+1)-A373937(n). - R. J. Mathar, Jun 24 2024

A373937 Number of compositions of 7*n-5 into parts 6 and 7.

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 805, 1378, 2457, 4823, 10556, 24753, 58976, 137808, 310974, 675850, 1420916, 2914906, 5900631, 11931283, 24360194, 50559900, 106791426, 228638698, 492908713, 1062928750, 2281600816, 4862773227, 10287720750
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n+k, n-5-6*k));

Formula

a(n) = A017847(7*n-5).
a(n) = Sum_{k=0..floor(n/6)} binomial(n+k,n-5-6*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7).
G.f.: x^5*(1-x)/((1-x)^7 - x^6).
a(n) = A369809(n+1)-A369809(n). - R. J. Mathar, Jun 24 2024

A017901 Expansion of 1/(1 - x^7 - x^8 - ...).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 66, 83, 105, 133, 168, 211, 264, 330, 413, 518, 651, 819, 1030, 1294, 1624, 2037, 2555, 3206, 4025, 5055, 6349, 7973, 10010, 12565, 15771, 19796, 24851, 31200, 39173
Offset: 0

Views

Author

Keywords

Comments

A Lamé sequence of higher order.
a(n) = number of compositions of n in which each part is >= 7. - Milan Janjic, Jun 28 2010
a(n+7) equals the number of n-length binary words such that 0 appears only in a run length that is a multiple of 7. - Milan Janjic, Feb 17 2015
A017847(n) = |a(-n)| for n>=0. - Michael Somos, Oct 28 2018

Examples

			G.f. = 1 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + 2*x^14 + ... - _Michael Somos_, Oct 28 2018
		

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, A000930, A017898, A017899, A017900, A017901, A017902, A017903, A017904.

Programs

  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    a := n -> (Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$5, 1][i] else 0 fi)^n)[7,7]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,1}, {1,0,0,0,0,0,0}, 60] (* Jean-François Alcover, Mar 28 2017 *)
  • PARI
    Vec((x-1)/(x-1+x^7)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = if( n < 0, polcoeff( 1 / (1 + x^6 - x^7) + x * O(x^-n), -n), polcoeff( (1 - x) / (1 - x - x^7) + x * O(x^n), n))}; /* Michael Somos, Oct 28 2018 */

Formula

G.f.: (x-1)/(x-1+x^7). - Alois P. Heinz, Aug 04 2008
For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k) = 0, otherwise. Then, for n>=1, a(n+7) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
a(n) = A005709(n) - A005709(n-1). - R. J. Mathar, Sep 07 2016
0 == a(n) + a(n+6) - a(n+7) for all n in Z. - Michael Somos, Oct 28 2018

A127841 a(1)=1, a(2)=...=a(7)=0, a(n) = a(n-7)+a(n-6) for n>7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 2, 7, 21, 35, 35, 21, 8, 9, 28, 56, 70, 56, 29, 17, 37, 84, 126, 126, 85, 46, 54, 121, 210, 252, 211
Offset: 1

Views

Author

Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007

Keywords

Comments

Part of the phi_k family of sequences defined by a(1)=1,a(2)=...=a(k)=0, a(n)=a(n-k)+a(n-k+1) for n>k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.
Apart from offset same as A017847. - Georg Fischer, Oct 07 2018

References

  • S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007. [Apparently unpublished as of May 2016]

Programs

  • GAP
    a:=[1,0,0,0,0,0,0];;  for n in [8..80] do a[n]:=a[n-6]+a[n-7]; od; a; # Muniru A Asiru, Oct 07 2018
  • Mathematica
    CoefficientList[Series[(1-x)*(1+x)*(1-x+x^2)*(1+x+x^2) / (1-x^6-x^7), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 0}, 50] (* Stefano Spezia, Oct 08 2018 *)
  • PARI
    Vec(x*(1-x)*(1+x)*(1-x+x^2)*(1+x+x^2)/(1-x^6-x^7) + O(x^100)) \\ Colin Barker, May 30 2016
    

Formula

Binet-like formula: a(n) = Sum_{i=1..7} (r_i^n)/(6(r_i)^2+7(r_i)) where r_i is a root of x^7=x+1.
G.f.: x*(1-x)*(1+x)*(1-x+x^2)*(1+x+x^2) / (1-x^6-x^7). - Colin Barker, May 30 2016

A376647 a(n) = Sum_{k=0..floor(n/3)} binomial(floor(k/2),n-3*k).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 3, 3, 2, 3, 3, 2, 4, 6, 5, 5, 6, 5, 6, 10, 11, 10, 11, 11, 11, 16, 21, 21, 21, 22, 22, 27, 37, 42, 42, 43, 44, 49, 64, 79, 84, 85, 87, 93, 113, 143, 163, 169, 172, 180, 206, 256, 306, 332, 341, 352, 386, 462, 562
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(k\2, n-3*k));
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec((1+x^3)/(1-x^6-x^7))

Formula

G.f.: (1-x^6)/((1-x^3) * (1-x^6-x^7)) = (1+x^3)/(1-x^6-x^7).
a(n) = a(n-6) + a(n-7).
a(n) = A017847(n) + A017847(n-3).
Previous Showing 11-15 of 15 results.