cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-88 of 88 results.

A138883 Number of digits in n-th even superperfect number A061652(n).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 10, 19, 27, 32, 38, 157, 183, 385, 663, 687, 969, 1280, 1332, 2917, 2993, 3376, 6002, 6533, 6987, 13395, 25962, 33265, 39751, 65050, 227831, 258715, 378632, 420921, 895932, 909525, 2098960
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008

Keywords

Comments

Also, number of digits in n-th superperfect number A019279(n), if there are no odd superperfect numbers.

Crossrefs

Formula

a(n)=A055642(A061652(n)). - R. J. Mathar, May 22 2008

Extensions

More terms from R. J. Mathar, May 22 2008

A138884 Numbers that are not even superperfect numbers.

Original entry on oeis.org

1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2008

Keywords

Comments

Also, numbers that are not superperfect numbers A019279, if there are no odd superperfect numbers.

Crossrefs

Even superperfect numbers: A061652. Cf. A019279, A132999, A133398.

A174226 Partial sums of A034897.

Original entry on oeis.org

6, 27, 55, 356, 681, 1177, 1874, 3207, 5116, 7157, 9290, 13191, 21319, 32012, 48525, 68046, 92647, 119624, 170925, 267286, 397439, 557280, 720481, 897142, 1111415, 1361736, 1637569, 1933910, 2240091, 2629684, 3116561, 3612090, 4154503
Offset: 1

Views

Author

Jonathan Vos Post, Mar 12 2010

Keywords

Comments

Partial sums of hyperperfect numbers. The subsequence of prime values in this partial sum begins: 21319, 92647, 720481.

Examples

			a(x) = 6 + 21 + 28 + 301 + 325 + 496 + 697 + 1333 + 1909 + 2041 + 2133 + 3901 + 8128 + 10693 + 16513 + 19521 + 24601 = 92647 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A034897(i) = SUM[i=1..n] {m such that k*sigma(m) = (k+1)*m + k - 1 for some positive integer k, and sigma being the divisor function A000005; noting that k=1 gives perfect numbers}.

A181711 Numbers of the form m*(2^k-1), where m = 2^(k-1)*(2^k-1) is a perfect number (A000396).

Original entry on oeis.org

18, 196, 15376, 1032256, 274810802176, 1125882727038976, 72057319160283136, 4951760152529835082242850816, 6129982163463555428116476125461573244012649752219877376
Offset: 1

Views

Author

Vladimir Shevelev, Nov 07 2010

Keywords

Comments

The associated exponents k are in A000043: 2, 3, 5, 7, 13, 17, 19 ,31, 61, ...
One can prove that, if m = 2^(k-1)*(2^k-1) is a perfect number, then m*2^k and m*(2^k-1) are both in A181595. Thus every even term in A000396 is a difference of two terms in A181595.

Examples

			With k=3, m = 2^(k-1)*(2^k - 1) = 2^2*(8 - 1) = 28 is a perfect number (A000396), so m*(2^k - 1) = 28*7 = 196 is in the sequence. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Formula

If odd perfect numbers do not exist, then a(n) = A181710(n) - A000396(n).
a(n) = A019279(n)*(A000668(n))^2 if there are no odd superperfect numbers. - César Aguilera, Jun 13 2017

Extensions

Definition condensed by R. J. Mathar, Dec 05 2010

A192275 Super anti-perfect numbers.

Original entry on oeis.org

7, 167, 507, 543, 3433, 6707, 9615, 15690, 87667, 1023971, 2054435, 5871045, 9150387, 14146891, 63538839, 169623015
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2011

Keywords

Comments

Like A019279 but using anti-divisors. sigma*^2(n)=sigma*(sigma*(n))=2n, where sigma*(n) is the sum of the anti-divisors of n.

Crossrefs

Programs

Extensions

a(9)-a(16) from Donovan Johnson, Sep 22 2011

A200758 Superimperfect numbers.

Original entry on oeis.org

2, 4, 8, 128, 32768, 2147483648
Offset: 1

Views

Author

Laszlo Toth, Nov 22 2011

Keywords

Comments

A number n is said to be superimperfect if 2*beta(beta(n)) = n, where beta is the multiplicative function defined by beta(p^e) = p^e - p^(e-1) + p^(e-2) - ... + (-1)^e for every prime power p^e. The function beta is called the alternating sum-of-divisors function. Here beta(n) is the absolute value of A061020(n). There are no other superimperfect numbers up to 10^7. The number 2^(2^k-1) is superimperfect if and only if k=1,2,3,4,5.

Crossrefs

Programs

  • PARI
    beta(n)=sumdiv(n,d,(-1)^bigomega(n/d)*d)
    for(n=1,1e8,if(2*beta(beta(n))==n,print1(n", "))) \\ Charles R Greathouse IV, Nov 22 2011
    
  • PARI
    ak(p,e)=my(s=1); for(i=1,e, s=s*p + (-1)^i); s
    beta(n)=my(f=factor(n)); prod(i=1,#f~, ak(f[i,1],f[i,2]))
    is(n)=my(b=beta(n)); 2*b-2 >= n && 2*beta(b)==n \\ Charles R Greathouse IV, Dec 27 2016

A283147 Number n such that there are no primes of the form sigma(n)/k where 1 < k < n is a (proper) nondivisor of n.

Original entry on oeis.org

1, 2, 4, 9, 12, 16, 25, 48, 64, 112, 192, 240, 289, 448, 729, 960, 1344, 1681, 1984, 2401, 3481, 4096, 5041, 6720, 7921, 10201, 12288, 15625, 17161, 27889, 28561, 28672, 29929, 39270, 53130, 61440, 65536, 71610, 82110
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 01 2017

Keywords

Crossrefs

Supersequence of A023194, A019279 and A061652.

Programs

  • PARI
    is(n)=my(s=sigma(n), p=factor(s)[,1], k); for(i=1,#p, k=s/p[i]; if(kCharles R Greathouse IV, Mar 01 2017

Extensions

Corrected by Charles R Greathouse IV, Mar 01 2017

A377142 Numbers m such that phi(2*m-1)/2 = phi(2*m) - 1, where phi = A000010.

Original entry on oeis.org

2, 4, 5, 16, 64, 4096, 65536, 262144
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 19 2024

Keywords

Comments

Conjecture 1: each term has the form p^(q-1), where p, q both some primes.
Conjecture 2: sequence is infinite.
Presumably the sequence of numbers of the form (exponent of a(n)) + (smallest divisor of a(n)) is a supersequence of Mersenne exponents.
If 2*m-1 is a Mersenne prime (A000668), then phi(2*m-1)/2 = m-1 = phi(2*m) - 1, so m is a term. - Robert Israel, Oct 20 2024

Examples

			2 is a term because phi(2*2-1)/2 = phi(3)/2 = 2/2 = 1 is equal to phi(2*2)-1 = phi(4)-1 = 2-1 = 1;
5 is a term because phi(2*5-1)/2 = phi(9)/2 = 6/2 = 3 is equal to phi(2*5)-1 = phi(10)-1 = 4-1 = 3.
		

Crossrefs

Supersequence of A019279 and A061652.

Programs

  • Magma
    [m: m in [2..2*10^6] | EulerPhi(2*m-1)/2 eq EulerPhi(2*m)-1];
    
  • Maple
    filter:= m -> numtheory:-phi(2*m-1)/2 = numtheory:-phi(2*m)-1:
    select(filter, [$1..10^7]); # Robert Israel, Oct 20 2024
  • Mathematica
    Select[Range[300000], EulerPhi[2*# - 1]/2 == EulerPhi[2*#] - 1 &] (* Amiram Eldar, Oct 30 2024 *)
  • PARI
    isok(m) = eulerphi(2*m-1)/2 == eulerphi(2*m) - 1; \\ Michel Marcus, Oct 30 2024

Formula

a(n) = (A376337(n) + 1)/2.
Previous Showing 81-88 of 88 results.