cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A078274 a(n) is the number from which if odd-positioned digits are deleted then one gets the concatenation of first n odd numbers, while if even-positioned digits are deleted then one gets reverse concatenation of first n odd numbers. Position of least significant digit is considered to be 1.

Original entry on oeis.org

11, 1331, 153351, 17355371, 1937557391, 11315977951311, 113351719917151331, 1135517391111917351351, 11375175911311113917551371, 113951779115111331115917751391, 1231517991171115311351117917952311, 12335271911911173115511371119927152331
Offset: 1

Views

Author

Amarnath Murthy, Nov 25 2002

Keywords

Comments

a(n) is formed by interleaving the digits of A019519(n) and A038395(n). - Sean A. Irvine, Jun 26 2025

Examples

			a(4) = 17355371: deleting alternate digits starting from the LSD gives 1357. Deleting the other digits gives 7531.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(d, v=w=[1]); for(i=2, n, v=concat(v, d=digits(2*i-1)); w=concat(d, w)); fromdigits(vector(2*#v, i, if(i%2, v[1+i\2], w[i/2]))); } \\ Sean A. Irvine, Jun 26 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
Corrected and extended by Harvey P. Dale, Apr 11 2012
Original terms restored by Sean A. Irvine, Jun 26 2025

A138965 Least prime factor of concatenation of first n odd numbers.

Original entry on oeis.org

1, 13, 3, 23, 37, 3, 11617, 5, 3, 135791113151719, 29, 3, 5, 11, 3, 135791113151719212325272931, 17, 3, 7, 13, 3, 131, 5, 3, 11, 25471443030907588399109, 3, 5, 7, 3, 181, 41, 3, 135791113151719212325272931333537394143454749515355575961636567, 19, 3, 40351, 5, 3, 7, 11, 3, 5, 57041, 3, 351269, 11, 3, 135791113151719212325272931333537394143454749515355575961636567697173757779818385878991939597
Offset: 1

Views

Author

M. F. Hasler, Apr 14 2008

Keywords

Crossrefs

Programs

  • PARI
    t=1; for( n=2,99, print1( factor( eval( t=Str( t,2*n-1 )))[1,1], ", "))

Formula

A138965(n) = A020639(A019519(n)) (= 3 if n = 0 (mod 3)).

A349960 Values taken by the function A067095 in the order of their appearance.

Original entry on oeis.org

2, 1, 18, 181, 1817, 18175, 181757, 1817571, 18175719, 181757197, 1817571972, 18175719727, 181757197277, 1817571972772, 18175719727727, 181757197277277, 1817571972772779, 18175719727727795, 181757197277277957, 1817571972772779572, 18175719727727795720, 181757197277277957202
Offset: 1

Views

Author

Bernard Schott, Dec 07 2021

Keywords

Comments

a(2) < a(1), but thereafter this function increases monotonically without limit (see Krusemeyer reference).
The record values > 2 of A067095(m) occur when m = 5, 50, 500, 5000, .... This happens precisely when the corresponding numerator A019520(m) goes from 2/4/6/8/10/12/....../999...98 to 2/4/6/8/10/12/....../999...98/1000...00, where here / means concatenation.
If a(n) is a k-digit number (k = A055642(a(n))), then 1.8 * 10^(k-1) < a(n) < 1.9 * 10^(k-1).
If we consider the sequence u(n) = a(n)/10^(k-1) where k = length(a(n)); we have u(n) is increasing with an upper bound 1.9; so, this sequence u(n) is convergent and, conjecture, this limit = 1.81757197277277957... found by Giorgos Kalogeropoulos; now, from this limit, it is possible to get the successive terms of this sequence here.

Examples

			Floor(A019520(5)/A019519(5)) = floor(246810/13579) = floor(18.175859...) = 18, hence, 18 is a term.
		

References

  • Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.

Crossrefs

Programs

  • Mathematica
    terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i];
    k[q_]:=f[Range[2,2q,2]]/f[Range[1,2q,2]];
    DeleteDuplicates@Table[Floor[k@n],{n,10^(terms-2)/2}] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
  • Python
    def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2,10**(n-2)+1,2)))//int("".join(str(d) for d in range(1,10**(n-2),2))) # Chai Wah Wu, Dec 10 2021
    from itertools import count
    def A349960(n): # a more efficient implementation
        if n <= 2:
            return 3-n
        a, b = '', ''
        for i in count(1,2):
            a += str(i)
            b += str(i+1)
            ai, bi = int(a), int(b)
            if len(a)+n-2 == len(b): return bi//ai
            m = 10**(n-2-len(b)+len(a))
            lb = bi*m//(ai+1)
            ub = (bi+1)*m//ai
            if lb == ub: return lb # Chai Wah Wu, Dec 10 2021

Formula

a(n) = floor(k((n + 6)/2)*10^(n - 1 - ceiling(log_10(k((n + 6)/2))))) for k(n) = A019520(n)/A019519(n) and n >= 2 (conjectured). - Giorgos Kalogeropoulos, Dec 10 2021

Extensions

a(5)-a(7) from Michel Marcus, Dec 07 2021
a(8)-a(9) from Martin Ehrenstein, Dec 10 2021
a(10)-a(22) from Chai Wah Wu, Dec 10 2021

A078259 a(n) = denominator(N), where N = 0.135..(2n-1) is the concatenation of the first n odd numbers after decimal point.

Original entry on oeis.org

10, 100, 200, 10000, 100000, 10000000, 1000000000, 20000000000, 10000000000000, 1000000000000000, 100000000000000000, 10000000000000000000, 40000000000000000000, 100000000000000000000000, 10000000000000000000000000, 1000000000000000000000000000
Offset: 1

Views

Author

Amarnath Murthy, Nov 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (t-> denom(t/10^length(t)))(parse(cat(2*i-1$i=1..n))):
    seq(a(n), n=1..16);  # Alois P. Heinz, Jun 25 2025

Extensions

Corrected and extended by Sascha Kurz, Jan 04 2003
a(4)-a(5) corrected and more terms from Sean A. Irvine, Jun 25 2025
Previous Showing 11-14 of 14 results.