cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A365347 The sum of divisors of the smallest number whose square is divisible by n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 7, 4, 18, 12, 12, 14, 24, 24, 7, 18, 12, 20, 18, 32, 36, 24, 28, 6, 42, 13, 24, 30, 72, 32, 15, 48, 54, 48, 12, 38, 60, 56, 42, 42, 96, 44, 36, 24, 72, 48, 28, 8, 18, 72, 42, 54, 39, 72, 56, 80, 90, 60, 72, 62, 96, 32, 15, 84, 144, 68, 54
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The number of divisors of the smallest number whose square is divisible by n is A322483(n).
The sum of divisors of the smallest square divisible by n is A365346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^((e + Mod[e, 2])/2 + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^((f[i,2] + f[i,2]%2)/2 + 1) - 1)/(f[i,1] - 1));}
    
  • PARI
    a(n) = sigma(n/core(n, 1)[2]); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000203(A019554(n)).
Multiplicative with a(p^e) = (p^(e + 1 + (e mod 2)) - 1)/(p - 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/2) * A002117 * A065465 = 0.529814898136... .

A365481 The sum of unitary divisors of the smallest number whose square is divisible by n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 5, 4, 18, 12, 12, 14, 24, 24, 5, 18, 12, 20, 18, 32, 36, 24, 20, 6, 42, 10, 24, 30, 72, 32, 9, 48, 54, 48, 12, 38, 60, 56, 30, 42, 96, 44, 36, 24, 72, 48, 20, 8, 18, 72, 42, 54, 30, 72, 40, 80, 90, 60, 72, 62, 96, 32, 9, 84, 144, 68, 54, 96
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of unitary divisors of the smallest number whose square is divisible by n is the same as the number of unitary divisors of n, A034444(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/2] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^ceil(f[i,2]/2) + 1);}
    
  • Python
    from math import prod
    from sympy import factorint
    def A365481(n): return prod(p**((e>>1)+(e&1))+1 for p,e in factorint(n).items()) # Chai Wah Wu, Sep 05 2023

Formula

a(n) = A034448(A019554(n)).
Multiplicative with a(p^e) = p^(ceiling(e/2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-1) - 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(2) * zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6) = 0.515959523197... .

A055491 Smallest square divisible by n divided by largest square which divides n.

Original entry on oeis.org

1, 4, 9, 1, 25, 36, 49, 4, 1, 100, 121, 9, 169, 196, 225, 1, 289, 4, 361, 25, 441, 484, 529, 36, 1, 676, 9, 49, 841, 900, 961, 4, 1089, 1156, 1225, 1, 1369, 1444, 1521, 100, 1681, 1764, 1849, 121, 25, 2116, 2209, 9, 1, 4, 2601, 169, 2809, 36, 3025, 196, 3249, 3364
Offset: 1

Views

Author

Henry Bottomley, Jun 28 2000

Keywords

Examples

			a(12) = 36/4 = 9.
		

Crossrefs

Programs

  • Haskell
    a055491 = (^ 2) . a007913  -- Reinhard Zumkeller, Jul 23 2014
    
  • Mathematica
    With[{sqs=Range[100]^2},Table[SelectFirst[sqs,Divisible[#,n]&]/ SelectFirst[ Reverse[sqs],Divisible[n,#]&],{n,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 18 2018 *)
    f[p_, e_] := p^(2 * Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2*(f[i,2]%2)));} \\ Amiram Eldar, Oct 27 2022

Formula

If n is written as Product(Pj^Ej) then a(n) = Product(Pj^(2*(Ej mod 2))).
a(n) = A053143(n)/A008833(n) = A007913(n)^2 = (A019554(n)/A000188(n))^2 = A000290(n)/A008833(n)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*zeta(2))) = 2*Pi^4/945 = 0.206156... . - Amiram Eldar, Oct 27 2022
Dirichlet g.f.: zeta(s-2) * zeta(2*s) / zeta(2*s-4). - Amiram Eldar, Sep 16 2023

A369430 Smallest number whose square is divisible by the n-th powerful number.

Original entry on oeis.org

1, 2, 4, 3, 4, 5, 9, 8, 6, 7, 8, 12, 9, 10, 18, 11, 25, 16, 12, 13, 14, 20, 36, 15, 27, 16, 24, 17, 18, 49, 19, 28, 20, 36, 21, 22, 50, 32, 23, 24, 25, 36, 45, 26, 27, 28, 40, 29, 72, 30, 31, 44, 54, 100, 32, 33, 75, 48, 34, 35, 36, 63, 121, 52, 37, 98, 38, 39
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[2000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]
    (* or *)
    f[p_, e_] := p^Ceiling[e/2]; f[p_, 1] := 0; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 2000], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 0, f[i,1]^ceil(f[i,2]/2)));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A019554(A001694(n)).
a(n) > 1 for n >= 2.
Sum_{k=1..n} a(k) ~ (c*n/Pi)^2 * (2*log(n) + 2*log(c) + 5*gamma - 1 - 6*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620), and c = zeta(3)/zeta(3/2).

A375359 The maximum exponent in the prime factorization of the smallest number whose square is divisible by n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 13 2024

Keywords

Comments

Differs from A050361 at n = 1, 64, 128, 192, ... . Differs from A366902 at n = 1, 64, 192, 216, ... . Differs from A325837 at n = 1, 216, 432, 648, ... .

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[(If[EvenQ[#], #, # + 1]) & /@ e]/2]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = if(n == 1, 0, vecmax(apply(x -> if(x % 2, x+1, x), factor(n)[,2]))/2);

Formula

a(n) = A051903(A019554(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum{k>=1} (1 - 1/zeta(2*k+1)) = 1.21464720975357037829... .

A056134 Smallest positive integer which is the geometric mean of n and an integer other than n.

Original entry on oeis.org

2, 4, 6, 2, 10, 12, 14, 4, 3, 20, 22, 6, 26, 28, 30, 4, 34, 6, 38, 10, 42, 44, 46, 12, 5, 52, 9, 14, 58, 60, 62, 8, 66, 68, 70, 6, 74, 76, 78, 20, 82, 84, 86, 22, 15, 92, 94, 12, 7, 10, 102, 26, 106, 18, 110, 28, 114, 116, 118, 30, 122, 124, 21, 8, 130, 132, 134, 34, 138, 140
Offset: 1

Views

Author

Henry Bottomley, Jun 13 2000

Keywords

Formula

a(n)=sqrt(n*A056135(n)). If n is squarefree then a(n)=2n, otherwise a(n)=A019554(n)

A085767 Smallest m such that n divides the pentagonal number A000326(m).

Original entry on oeis.org

1, 3, 3, 3, 2, 3, 5, 11, 9, 7, 4, 3, 9, 7, 12, 11, 6, 27, 13, 27, 12, 4, 8, 27, 17, 35, 27, 19, 10, 12, 21, 43, 15, 23, 5, 27, 25, 19, 9, 27, 14, 12, 29, 11, 27, 8, 16, 75, 33, 67, 6, 35, 18, 27, 15, 75, 51, 39, 20, 27, 41, 31, 54, 43, 22, 15, 45, 40, 54, 7, 24, 27, 49, 99, 42, 19, 26, 39
Offset: 1

Views

Author

Jon Perry, Jul 22 2003

Keywords

Examples

			Let pe(m)=m*(3m-1)/2. The pe(1)=1, pe(2)=5, pe(3)=12. As pe(3) is the first divisible by 6, a(6)=3.
		

Crossrefs

Cf. A011772 (triangular numbers), A019554 (squares).

Programs

  • Mathematica
    smn[n_]:=Module[{m=1,c},c=(m(3m-1))/2;While[!Divisible[c,n],m++;c=(m(3m-1))/2];m]; Array[smn, 80] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    pe(n)=n*(3*n-1)/2 for (n=1,50,c=1; while (pe(c)%n!=0,c++); print1(c","))

Extensions

More terms from David Wasserman, Feb 10 2005

A072391 D2(n,n) = Sum_{1<=k<=n} (d_n(k^2)), where d_a(k^2)=card{d: d|k and 1<=d<=a} for real a.

Original entry on oeis.org

1, 3, 5, 9, 11, 16, 18, 23, 28, 33, 35, 44, 46, 51, 56, 64, 66, 76, 78, 87, 92, 97, 99, 111, 118, 123, 129, 138, 140, 154, 156, 165, 170, 175, 180, 198, 200, 205, 210, 222, 224, 238, 240, 249, 259, 264, 266, 283, 292, 304, 309, 318, 320, 333, 338, 350, 355, 360
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002

Keywords

Crossrefs

Cf. A019554.

Formula

a(n)=Sum_{k<=n} (floor(n/A019554(k))) Asymptotic expression: a(n)=(n*log(n)^2/(4*zeta(2)))+(n*log(n)/zeta(2))*((3*gamma/2)-(zeta'(2)/zeta(2))), gamma = A001620.
Asymptotic expression (includes error term): a(n)=(n*log(n)^2/(4*zeta(2)))+(n*log(n)/zeta(2))*((3*gamma/2)-(zeta'(2)/zeta(2)))+O(n), gamma = A001620.

A085766 Smallest m such that n divides the tetrahedral number A000292(m+1).

Original entry on oeis.org

1, 1, 6, 1, 2, 6, 4, 5, 24, 2, 8, 6, 10, 5, 7, 13, 14, 25, 16, 3, 6, 9, 20, 7, 22, 10, 78, 5, 26, 7, 28, 29, 8, 14, 4, 25, 34, 17, 24, 7, 38, 6, 40, 9, 24, 21, 44, 15, 46, 22, 15, 11, 50, 78, 8, 5, 16, 26, 56, 7, 58, 29, 25, 61, 12, 42, 64, 14, 43, 13, 68, 53, 70, 34, 24, 17, 19, 25, 76, 13
Offset: 1

Views

Author

Jon Perry, Jul 22 2003

Keywords

Examples

			Let te(m)=(m+1)(m+2)(m+3)/6. Then te(1)=4, te(2)=10, te(3)=20, te(4)=35, te(5)=56 and te(6)=84. te(6) is the first tetrahedral number divisible by 3, hence a(3)=6.
		

Crossrefs

Cf. A011772 (triangular numbers), A019554 (squares).

Programs

  • PARI
    te(n)=(n+1)*(n+2)*(n+3)/6 for (n=1,50,c=1; while (te(c)%n!=0,c++); print1(c","))
    
  • PARI
    first(n) = {my(res = vector(n), todo = n); res[1] = 1; todo--; for(i = 1, oo, t = binomial(i + 2, 3); d = divisors(t); for(j = 1, #d, if(d[j] <= n && res[d[j]] == 0, res[d[j]] = i - 1; todo--; if(todo <= 0, return(res); ) ) ) ) } \\ David A. Corneth, Mar 22 2021

Extensions

More terms from David Wasserman, Feb 10 2005
Definition corrected by David A. Corneth, Mar 22 2021
Previous Showing 31-39 of 39 results.