cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 339 results. Next

A285321 Square array A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)), read by descending antidiagonals.

Original entry on oeis.org

2, 3, 4, 6, 9, 8, 5, 12, 27, 16, 10, 25, 18, 81, 32, 15, 20, 125, 24, 243, 64, 30, 45, 40, 625, 36, 729, 128, 7, 60, 75, 50, 3125, 48, 2187, 256, 14, 49, 90, 135, 80, 15625, 54, 6561, 512, 21, 28, 343, 120, 225, 100, 78125, 72, 19683, 1024
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

A permutation of the natural numbers > 1.
Otherwise like array A284311, but the columns come in different order.

Examples

			The top left 12x6 corner of the array:
   2,   3,  6,     5,  10,  15,  30,      7,  14,  21,  42,   35
   4,   9, 12,    25,  20,  45,  60,     49,  28,  63,  84,  175
   8,  27, 18,   125,  40,  75,  90,    343,  56, 147, 126,  245
  16,  81, 24,   625,  50, 135, 120,   2401,  98, 189, 168,  875
  32, 243, 36,  3125,  80, 225, 150,  16807, 112, 441, 252, 1225
  64, 729, 48, 15625, 100, 375, 180, 117649, 196, 567, 294, 1715
		

Crossrefs

Transpose: A285322.
Cf. A008479 (index of the row where n is located), A087207 (of the column).
Cf. arrays A284311, A285325, also A285332.

Programs

  • Mathematica
    a065642[n_] := Module[{k}, If[n == 1, Return[1], k = n + 1; While[ EulerPhi[k]/k != EulerPhi[n]/n, k++]]; k];
    A[1, k_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[ IntegerDigits[k, 2]]];
    A[n_ /; n > 1, k_] := A[n, k] = a065642[A[n - 1, k]];
    Table[A[n - k + 1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 17 2019 *)
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k))
    for n in range(1, 11): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    (define (A285321 n) (A285321bi (A002260 n) (A004736 n)))
    (define (A285321bi row col) (if (= 1 row) (A019565 col) (A065642 (A285321bi (- row 1) col))))
    

Formula

A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)).
For all n >= 2: A(A008479(n), A087207(n)) = n.

A285319 Squarefree numbers n for which A019565(n) < n and A048675(n) is also squarefree.

Original entry on oeis.org

66, 129, 130, 258, 514, 1034, 1041, 1042, 2049, 2054, 2055, 2066, 2082, 2114, 4098, 4101, 4102, 4130, 4161, 4162, 4226, 4353, 4354, 4610, 5122, 8193, 8198, 8202, 8205, 8206, 8210, 8211, 8229, 8259, 8706, 9218, 9219, 12291
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2017

Keywords

Comments

Any finite cycle in A019565, if such cycles exist at all, must have at least one member that occurs somewhere in this sequence. Furthermore, such a number n should satisfy A019565(n) < n and that A048675(n)^k is squarefree for all k >= 0.

Crossrefs

Subsequence of A285317.
Cf. also A285320 and discussion in A285331 and A285332.

Programs

  • Mathematica
    lim = 4000;
    A019565 = Table[Times @@ Prime@Flatten@Position[#, 1] &@
       Reverse@IntegerDigits[n, 2], {n, 1, lim}]; (* From Michael De Vlieger in A019565 *)
    A048675 = Table[Total[#[[2]]*2^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]], {n, 1, lim}]; (* From Jean-François Alcover in A048675 *)
    Select[Range[lim], A019565[[#]] < # && SquareFreeQ[#] &&
    SquareFreeQ[A048675[[#]]] &] (* Robert Price, Apr 07 2019 *)
  • PARI
    allocatemem(2^30);
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
    isA285319(n) = (issquarefree(n) & (A019565(n) < n) && issquarefree(A048675(n)));
    n=0; k=0; while(k <= 60, n=n+1; if(isA285319(n),print1(n,", ");k=k+1));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A285319 (MATCHING-POS 1 0 (lambda (n) (and (< (A019565 n) n) (not (zero? (A008683 n))) (not (zero? (A008683 (A048675 n))))))))

A302033 a(n) = A019565(A003188(n)).

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 10, 5, 35, 70, 210, 105, 21, 42, 14, 7, 77, 154, 462, 231, 1155, 2310, 770, 385, 55, 110, 330, 165, 33, 66, 22, 11, 143, 286, 858, 429, 2145, 4290, 1430, 715, 5005, 10010, 30030, 15015, 3003, 6006, 2002, 1001, 91, 182, 546, 273, 1365, 2730, 910, 455, 65, 130, 390, 195, 39, 78, 26, 13, 221, 442, 1326, 663, 3315, 6630, 2210, 1105
Offset: 0

Views

Author

Antti Karttunen & Peter Munn, Apr 16 2018

Keywords

Comments

A squarefree analog of A207901 (and the subsequence consisting of its squarefree terms): Each term is either a divisor or a multiple of the next one, and the terms differ by a single prime factor. Compare also to A284003.
For all n >= 0, max(a(n + 1), a(n)) / min(a(n + 1), a(n)) = A094290(n + 1) = prime(valuation(n + 1, 2) + 1) = A000040(A001511(n + 1)). [See Russ Cox's Dec 04 2010 comment in A007814.] - David A. Corneth & Antti Karttunen, Apr 16 2018

Crossrefs

A permutation of A005117. Subsequence of A207901.
Cf. A302054 (gives the sum of prime divisors).
Cf. also A277811, A283475, A284003.

Programs

  • Mathematica
    Array[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[BitXor[#, Floor[#/2]], 2] &, 72, 0] (* Michael De Vlieger, Apr 27 2018 *)
  • PARI
    A003188(n) = bitxor(n, n>>1);
    A019565(n) = {my(j); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A302033(n) = A019565(A003188(n));
    
  • PARI
    first(n) = {my(pr = primes(1 + logint(n, 2)), ex = vector(#pr, i, 1), res = vector(n)); res[1] = 1; for(i = 1, n-1, v = valuation(i, 2); res[i + 1] = res[i] * pr[v++] ^ ex[v]; ex[v]*=-1); res}

Formula

a(n) = A019565(A003188(n)).
a(n) = A284003(A064706(n)).
a(n+1) = A059897(a(n), A094290(n+1)). - Peter Munn, Apr 01 2019

A332462 a(n) = A019565(A156552(n)).

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 7, 30, 15, 14, 11, 42, 13, 22, 21, 210, 17, 70, 19, 66, 33, 26, 23, 330, 35, 34, 105, 78, 29, 110, 31, 2310, 39, 38, 55, 462, 37, 46, 51, 390, 41, 130, 43, 102, 165, 58, 47, 2730, 77, 154, 57, 114, 53, 770, 65, 510, 69, 62, 59, 546, 61, 74, 195, 30030, 85, 170, 67, 138, 87, 182, 71, 4290, 73, 82, 231, 174, 91
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Crossrefs

Permutation of squarefree numbers, A005117.

Programs

Formula

a(n) = A019565(A156552(n)) = A097248(A332461(n)).
a(p) = p for all primes p.
For all n >= 1, A048675(a(n)) = A156552(n).
For all n >= 0, a(A005940(1+n)) = A019565(n).
For all n >= 0, a(2^n) = A002110(n).

A284003 a(n) = A007913(A283477(n)) = A019565(A006068(n)).

Original entry on oeis.org

1, 2, 6, 3, 30, 15, 5, 10, 210, 105, 35, 70, 7, 14, 42, 21, 2310, 1155, 385, 770, 77, 154, 462, 231, 11, 22, 66, 33, 330, 165, 55, 110, 30030, 15015, 5005, 10010, 1001, 2002, 6006, 3003, 143, 286, 858, 429, 4290, 2145, 715, 1430, 13, 26, 78, 39, 390, 195, 65, 130, 2730, 1365, 455, 910, 91, 182, 546, 273, 510510, 255255, 85085, 170170, 17017
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

A squarefree analog of A302783. Each term is either a divisor or a multiple of the next one. In contrast to A302033 at each step the previous term can be multiplied (or divided), not just by a single prime, but possibly by a product of several distinct ones, A019565(A000975(k)). E.g., a(3) = 3, a(4) = 2*5*a(3) = 30. - Antti Karttunen, Apr 17 2018

Crossrefs

Programs

Formula

a(n) = A007913(A283477(n)).
Other identities. For all n >= 0:
A048675(a(n)) = A006068(n).
A046523(a(n)) = A284004(n).
It seems that A001222(a(n)) = A209281(n).
a(n) = A019565(A006068(n)) = A302033(A064707(n)). - Antti Karttunen, Apr 16 2018

Extensions

Name amended with a second formula by Antti Karttunen, Apr 16 2018

A285315 Numbers n for which A019565(n) < n.

Original entry on oeis.org

8, 16, 32, 33, 64, 65, 66, 128, 129, 130, 131, 132, 136, 256, 257, 258, 259, 260, 261, 264, 272, 512, 513, 514, 515, 516, 517, 518, 520, 521, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1040, 1041, 1042, 1056, 1057, 1088, 1089, 1152, 1280, 1536, 2048, 2049, 2050, 2051
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2017

Keywords

Comments

Any finite cycle in A019565, if such cycles exist at all, must have at least one member that occurs somewhere in this sequence, although certainly not all terms of this sequence could occur in a finite cycle. Specifically, such a number n must occur also in consecutively nested subsequences A285317, A285319, ..., and in general, it should satisfy A019565(n) < n and that A048675^{k}(n) is squarefree for all k = 0 .. ∞.

Crossrefs

Complement: A285316.
Cf. A285317, A285319 (subsequences).

Programs

  • Mathematica
    a019565[n_]:=Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2] ; Select[Range[3000], a019565[#]<# &] (* Indranil Ghosh, Apr 18 2017, after Michael De Vlieger *)
  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    isA285315(n) = (A019565(n) < n);
    n=0; k=1; while(k <= 10000, n=n+1; if(isA285315(n),write("b285315.txt", k, " ", n);k=k+1));
    
  • Python
    from sympy import prime, prod
    def a019565(n): return prod(prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1') if n > 0 else 1
    [n for n in range(1, 3001) if a019565(n)Indranil Ghosh, Apr 18 2017, after Chai Wah Wu
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A285315 (MATCHING-POS 1 0 (lambda (n) (< (A019565 n) n))))
    

A293231 a(n) = Product_{d|n, dA019565(A193231(d)).

Original entry on oeis.org

1, 2, 2, 12, 2, 36, 2, 120, 6, 60, 2, 5400, 2, 360, 30, 25200, 2, 56700, 2, 21000, 180, 840, 2, 23814000, 10, 504, 630, 50400, 2, 661500, 2, 554400, 420, 132, 300, 392931000, 2, 792, 252, 242550000, 2, 24948000, 2, 2772000, 22050, 1980, 2, 605113740000, 60, 4851000, 66, 3880800, 2, 720373500, 700, 4889808000, 396, 2772, 2, 588305025000, 2, 1848
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A019565, A193231, A290090, A293214, A293232 (rgs-version of this sequence).
Cf. also A001317, A045544, A053576.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; \\ This function from Franklin T. Adams-Watters
    A293231(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A193231(d)))); m; };

Formula

a(n) = Product_{d|n, dA019565(A193231(d)).
For all n >= 1, A007814(a(n)) = A290090(n).
For n = 0..5, a(A001317((2^n)-1)) = A002110((2^n)-1).

A293232 Restricted growth sequence transform of A293231, where A293231(n) = Product_{d|n, dA019565(A193231(d)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 7, 35, 36, 37, 2, 38, 39, 40, 41, 42, 2, 43, 2, 44, 45, 46, 23, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 55, 56, 2, 57, 58, 59, 2, 60, 61, 62, 63, 64, 2, 65, 66, 67, 68, 69, 70, 71, 2, 72
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A290090.
Differs from related A293215 for the first time at n=55, where a(55) = 39, while A293215(55) = 28.

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; \\ This function from Franklin T. Adams-Watters
    A293231(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A193231(d)))); m; };
    write_to_bfile(1,rgs_transform(vector(65537,n,A293231(n))),"b293232.txt");

A300832 a(n) = Product_{d|n} A019565(d)^[moebius(n/d) = -1].

Original entry on oeis.org

1, 2, 2, 3, 2, 18, 2, 5, 6, 30, 2, 75, 2, 90, 60, 7, 2, 210, 2, 105, 180, 126, 2, 245, 10, 210, 14, 525, 2, 132300, 2, 11, 252, 66, 300, 1155, 2, 198, 420, 385, 2, 346500, 2, 825, 2940, 990, 2, 847, 30, 3234, 132, 1155, 2, 15246, 420, 2695, 396, 2310, 2, 6670125, 2, 6930, 1540, 13, 700, 128700, 2, 195, 1980, 343980, 2, 5005, 2, 390
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2018

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A300832(n) = { my(m=1); fordiv(n,d,if(-1==moebius(n/d), m *= A019565(d))); m; };

Formula

a(n) = A293214(n) / (A300830(n)*A300831(n)).

A319991 a(n) = Product_{d|n, dA019565(d)^[1 == d mod 3].

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 10, 2, 2, 2, 10, 2, 60, 2, 10, 2, 2, 2, 210, 60, 2, 2, 10, 2, 140, 2, 300, 2, 42, 2, 110, 2, 2, 60, 10, 2, 132, 140, 210, 2, 60, 2, 1650, 2, 2, 2, 110, 60, 6468, 2, 700, 2, 2, 2, 115500, 132, 2, 2, 210, 2, 4620, 60, 110, 140, 330, 2, 390, 2, 1260, 2, 10, 2, 260, 308, 660, 60, 140, 2, 210210, 2, 2, 2, 115500, 2, 1092, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. also A293221.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d)^[1 == d mod 3].
a(n) = A293214(n) / (A319990(n)*A319992(n)).
For all n >= 1:
A007814(a(n)) = A320001(n).
A048675(a(n)) = A293897(n).
A195017(a(n)) = A293895(n) mod 3.
Previous Showing 11-20 of 339 results. Next