cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A132744 Decimal expansion of Pi/28.

Original entry on oeis.org

1, 1, 2, 1, 9, 9, 7, 3, 7, 6, 2, 8, 2, 0, 6, 9, 0, 1, 3, 7, 3, 6, 6, 5, 8, 3, 5, 1, 1, 7, 1, 2, 5, 1, 0, 3, 0, 0, 7, 0, 4, 1, 7, 6, 4, 2, 6, 3, 3, 9, 6, 6, 3, 6, 4, 6, 3, 3, 9, 0, 8, 7, 8, 2, 9, 6, 7, 0, 7, 7, 2, 8, 7, 9, 5, 9, 3, 6, 0, 3, 5, 6, 6, 5, 2, 8, 6, 9, 5, 8, 0, 4, 7, 9, 3, 2, 7, 5, 2, 4, 2, 7, 9, 3, 3, 8, 6, 0, 2, 3, 2, 6, 1, 7, 2, 2, 5, 2, 3, 7
Offset: 0

Views

Author

Omar E. Pol, Aug 27 2007

Keywords

Examples

			0.112199737628...
		

Crossrefs

Programs

Extensions

More terms from Harvey P. Dale, Feb 23 2012

A325744 First term of n-th difference sequence of (floor(Pi*k/6)), k >= 0.

Original entry on oeis.org

0, 1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097151, 4194280, -8388307, 16774590, -33536530, 67007280, -133718550, 266253060, -528213975, 1042120800, -2039889435
Offset: 1

Views

Author

Clark Kimberling, Jun 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[First[Differences[Table[Floor[(Pi/6)*n], {n, 0, 50}], n]], {n, 1, 50}]

A381672 Decimal expansion of the isoperimetric quotient of a regular icosahedron.

Original entry on oeis.org

8, 2, 8, 7, 9, 7, 7, 1, 9, 2, 5, 2, 0, 1, 2, 0, 2, 1, 5, 0, 0, 5, 8, 1, 0, 0, 3, 8, 1, 2, 9, 6, 3, 5, 7, 5, 8, 6, 1, 7, 8, 3, 0, 3, 0, 8, 7, 2, 3, 3, 8, 2, 6, 7, 7, 4, 6, 4, 0, 7, 0, 4, 6, 1, 9, 3, 7, 9, 8, 9, 9, 5, 0, 2, 1, 0, 8, 1, 9, 4, 0, 5, 9, 0, 0, 8, 8, 0, 5, 8
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, see A381671.

Examples

			0.8287977192520120215005810038129635758617830308723...
		

Crossrefs

Cf. A273637 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381671 (tetrahedron).

Programs

  • Mathematica
    First[RealDigits[Pi*GoldenRatio^4/(15*Sqrt[3]), 10, 100]]

Formula

Equals Pi*phi^4/(15*sqrt(3)) = A000796*A374883/(15*A002194).

A210975 Decimal expansion of square root of (Pi/6).

Original entry on oeis.org

7, 2, 3, 6, 0, 1, 2, 5, 4, 5, 5, 8, 2, 6, 7, 6, 5, 9, 3, 6, 3, 0, 1, 4, 6, 2, 7, 2, 9, 0, 7, 9, 5, 7, 6, 7, 8, 7, 2, 1, 0, 8, 8, 9, 4, 7, 8, 4, 5, 4, 5, 9, 2, 6, 9, 7, 6, 2, 1, 2, 3, 2, 7, 7, 7, 0, 3, 6, 8, 2, 0, 5, 2, 8, 6, 2
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2012

Keywords

Comments

Edge of a cube with surface area Pi.

Examples

			0.723601254558267659363...
		

Crossrefs

Cf. A019673.

Programs

Formula

Equals (Pi/6)^(1/2).
Equals sqrt(A019673).
From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(3x)/sqrt(x) dx [Gradshteyn and Ryzhik].
Equals Integral_{x >= 0} cos(3x)/sqrt(x) dx [Gradshteyn and Ryzhik]. (End)

A268508 Decimal expansion of Pi*sqrt(3)/8.

Original entry on oeis.org

6, 8, 0, 1, 7, 4, 7, 6, 1, 5, 8, 7, 8, 3, 1, 6, 9, 3, 9, 7, 2, 7, 7, 9, 3, 4, 6, 6, 1, 5, 8, 0, 8, 3, 9, 9, 6, 0, 6, 5, 2, 4, 8, 4, 3, 0, 3, 4, 7, 7, 7, 7, 1, 5, 8, 3, 8, 7, 0, 6, 8, 5, 0, 7, 7, 0, 5, 4, 6, 1, 9, 2, 9, 2, 2, 3, 8, 2, 7, 0, 6, 3, 8, 1, 5, 4, 6, 8, 7, 0, 5, 7, 9, 5, 2, 2, 5, 6, 3, 3, 2, 1, 0, 8, 3
Offset: 0

Views

Author

Stanislav Sykora, Apr 16 2016

Keywords

Comments

Atomic packing factor (APF) for the body-centered cubic lattice (bcc), one of the very common crystallographic lattice types of chemical elements and compounds.

Examples

			0.68017476158783169397277934661580839960652484303477771583870685077...
		

Crossrefs

Cf. A000796 (Pi), A002194 (sqrt(3)), A180317 (sqrt(3)/80).
APF's of other lattices: A093825 (fcc,hcp), A019673 (simple cubic), A247446 (diamond cubic).

Programs

  • Mathematica
    RealDigits[Pi Sqrt[3]/8, 10, 120][[1]] (* Eric W. Weisstein, Jan 04 2019 *)
  • PARI
    Pi*sqrt(3)/8

A386522 Decimal expansion of the number of radians in a minute of arc.

Original entry on oeis.org

0, 0, 0, 2, 9, 0, 8, 8, 8, 2, 0, 8, 6, 6, 5, 7, 2, 1, 5, 9, 6, 1, 5, 3, 9, 4, 8, 4, 6, 1, 4, 1, 4, 7, 6, 8, 7, 8, 5, 5, 7, 3, 8, 1, 1, 9, 8, 1, 4, 2, 3, 6, 2, 0, 9, 0, 9, 3, 4, 9, 5, 3, 1, 9, 0, 6, 6, 9, 5, 1, 6, 8, 1, 8, 5, 7, 6, 7, 2, 4, 1, 5, 7, 3, 9, 4, 7, 0, 4, 0, 2, 6, 1, 6, 0, 5, 7, 5, 1, 5
Offset: 0

Views

Author

Jason Bard, Aug 21 2025

Keywords

Examples

			0.00029088820866572159615394846141476878557381198142362...
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[Pi/10800, 10, 100][[1]]]

Formula

Equals Pi/10800.
Equals A019685/60.

A228715 Decimal expansion of 1 - Pi/6.

Original entry on oeis.org

4, 7, 6, 4, 0, 1, 2, 2, 4, 4, 0, 1, 7, 0, 1, 1, 2, 6, 9, 2, 2, 8, 9, 2, 7, 6, 9, 4, 5, 3, 4, 1, 6, 1, 8, 5, 9, 6, 7, 1, 3, 8, 4, 3, 3, 4, 3, 7, 4, 8, 2, 3, 6, 3, 1, 7, 0, 8, 4, 2, 5, 6, 7, 9, 4, 8, 6, 9, 7, 2, 6, 5, 6, 1, 8, 9, 6, 5, 1, 6, 6, 8, 9, 5, 3, 2, 7, 5, 2, 9, 1, 0, 9, 6, 4, 7, 1, 5, 5, 3
Offset: 0

Views

Author

Omar E. Pol, Sep 24 2013

Keywords

Comments

Volume between a regular hexahedron and the inscribed sphere of diameter 1.

Examples

			0.47640122440170112692289276945341618596713843343748...
		

Crossrefs

Cf. A019673.

Programs

Formula

1 - 4*Pi*(1/2)^3/3 = 1 - A019673.

A336199 Decimal expansion of the distance between the centers of two unit-radius spheres such that the volume of intersection is equal to the sum of volumes of the two nonoverlapping parts.

Original entry on oeis.org

4, 5, 2, 1, 4, 7, 4, 2, 7, 5, 7, 8, 4, 1, 5, 9, 8, 1, 8, 2, 8, 6, 1, 0, 8, 3, 1, 1, 8, 3, 1, 8, 1, 2, 6, 3, 2, 4, 7, 5, 0, 9, 1, 5, 3, 2, 5, 9, 6, 7, 7, 5, 6, 6, 8, 0, 7, 7, 6, 7, 0, 4, 5, 7, 6, 0, 0, 6, 8, 4, 5, 6, 0, 5, 4, 2, 1, 8, 0, 4, 2, 8, 7, 9, 5, 8, 5
Offset: 0

Views

Author

Amiram Eldar, Jul 11 2020

Keywords

Comments

Solution to the three-dimensional version of Mrs. Miniver's problem.
The intersection volume is equal to 2/3 of the volume of each sphere, i.e., 8*Pi/9.

Examples

			0.452147427578415981828610831183181263247509153259677...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 * Sin[ArcCos[-1/3]/3 - Pi/6], 10, 100][[1]]

Formula

Equals 4 * sin(arccos(-1/3)/3 - Pi/6).
The smaller of the two positive roots of the equation x^3 - 12*x + 16/3 = 0.
Previous Showing 21-28 of 28 results.