cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 64 results. Next

A032607 Concatenation of n and n + 2 or {n,n+2}.

Original entry on oeis.org

13, 24, 35, 46, 57, 68, 79, 810, 911, 1012, 1113, 1214, 1315, 1416, 1517, 1618, 1719, 1820, 1921, 2022, 2123, 2224, 2325, 2426, 2527, 2628, 2729, 2830, 2931, 3032, 3133, 3234, 3335, 3436, 3537, 3638, 3739, 3840, 3941, 4042, 4143, 4244
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@{n,n+2}]],{n,50}] (* Harvey P. Dale, Dec 18 2013 *)

A032608 Concatenation of n and n + 3.

Original entry on oeis.org

14, 25, 36, 47, 58, 69, 710, 811, 912, 1013, 1114, 1215, 1316, 1417, 1518, 1619, 1720, 1821, 1922, 2023, 2124, 2225, 2326, 2427, 2528, 2629, 2730, 2831, 2932, 3033, 3134, 3235, 3336, 3437, 3538, 3639, 3740, 3841, 3942, 4043, 4144, 4245
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[n+3]]],{n,50}] (* Harvey P. Dale, Jul 11 2011 *)
    #[[1]]*10^IntegerLength[#[[2]]]+#[[2]]&/@Table[{n,n+3},{n,50}] (* Harvey P. Dale, May 21 2018 *)

A032609 Concatenation of n and n + 4 or {n,n+4}.

Original entry on oeis.org

15, 26, 37, 48, 59, 610, 711, 812, 913, 1014, 1115, 1216, 1317, 1418, 1519, 1620, 1721, 1822, 1923, 2024, 2125, 2226, 2327, 2428, 2529, 2630, 2731, 2832, 2933, 3034, 3135, 3236, 3337, 3438, 3539, 3640, 3741, 3842, 3943, 4044, 4145, 4246
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

A032611 Concatenation of n and n + 6 or {n,n+6}.

Original entry on oeis.org

17, 28, 39, 410, 511, 612, 713, 814, 915, 1016, 1117, 1218, 1319, 1420, 1521, 1622, 1723, 1824, 1925, 2026, 2127, 2228, 2329, 2430, 2531, 2632, 2733, 2834, 2935, 3036, 3137, 3238, 3339, 3440, 3541, 3642, 3743, 3844, 3945, 4046, 4147, 4248
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

A032613 Concatenation of n and n + 8 or {n,n+8}.

Original entry on oeis.org

19, 210, 311, 412, 513, 614, 715, 816, 917, 1018, 1119, 1220, 1321, 1422, 1523, 1624, 1725, 1826, 1927, 2028, 2129, 2230, 2331, 2432, 2533, 2634, 2735, 2836, 2937, 3038, 3139, 3240, 3341, 3442, 3543, 3644, 3745, 3846, 3947, 4048, 4149
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

A032614 Concatenation of n and n + 9 or {n,n+9}.

Original entry on oeis.org

110, 211, 312, 413, 514, 615, 716, 817, 918, 1019, 1120, 1221, 1322, 1423, 1524, 1625, 1726, 1827, 1928, 2029, 2130, 2231, 2332, 2433, 2534, 2635, 2736, 2837, 2938, 3039, 3140, 3241, 3342, 3443, 3544, 3645, 3746, 3847, 3948, 4049, 4150, 4251, 4352, 4453, 4554, 4655
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*10^Floor[Log10[n+9]+1]+n+9; Array[a,46] (* Stefano Spezia, Sep 04 2023 *)

Extensions

a(42)-a(46) from Stefano Spezia, Sep 04 2023

A074842 Triplets: base 10 representation is the juxtaposition of three identical strings.

Original entry on oeis.org

111, 222, 333, 444, 555, 666, 777, 888, 999, 101010, 111111, 121212, 131313, 141414, 151515, 161616, 171717, 181818, 191919, 202020, 212121, 222222, 232323, 242424, 252525, 262626, 272727, 282828, 292929, 303030, 313131, 323232, 333333
Offset: 1

Views

Author

Felice Russo, Sep 10 2002

Keywords

Crossrefs

Cf. A020338.

Programs

  • Magma
    [Seqint(Intseq(n) cat Intseq(n) cat Intseq(n)): n in [1..46]]; // Vincenzo Librandi, Feb 21 2014
  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@PadRight[{},3,n]]],{n,40}] (* Harvey P. Dale, Aug 10 2019 *)
  • UBASIC
    10 cls
    30 for I=1 to 100
    40 A=str(I)
    50 C=A+A+A
    60 B=val(cutspc(C))
    80 print B
    90 next
    100 end
    

A176597 Double primes: concatenation of the n-th prime with itself.

Original entry on oeis.org

22, 33, 55, 77, 1111, 1313, 1717, 1919, 2323, 2929, 3131, 3737, 4141, 4343, 4747, 5353, 5959, 6161, 6767, 7171, 7373, 7979, 8383, 8989, 9797, 101101, 103103, 107107, 109109, 113113, 127127, 131131, 137137, 139139, 149149, 151151, 157157, 163163
Offset: 1

Views

Author

Vincenzo Librandi, Apr 21 2010

Keywords

Examples

			Concatenation 2 and 2 is 22; 3 and 3 is 33; 5 and 5 is 55; etc.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(p) cat Intseq(p)): p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 14 2013
    
  • Mathematica
    dp[n_] := Module[{idn = IntegerDigits[n]}, FromDigits[Join[idn, idn]]]; dp /@ Prime[Range[40]] (* Harvey P. Dale, Jun 02 2011 *)
  • PARI
    a(n) = { my(p=Str(prime(n))); eval(concat(p,p)); } /* Joerg Arndt, Mar 14 2013 */

Extensions

Edited by Charles R Greathouse IV and R. J. Mathar, Apr 23 2010

A206528 5^n concatenated with itself.

Original entry on oeis.org

11, 55, 2525, 125125, 625625, 31253125, 1562515625, 7812578125, 390625390625, 19531251953125, 97656259765625, 4882812548828125, 244140625244140625, 12207031251220703125, 61035156256103515625, 3051757812530517578125, 152587890625152587890625
Offset: 0

Views

Author

Vincenzo Librandi, Mar 17 2012

Keywords

Examples

			a(1)=55 because 5^1 concatenated with 5^1 is 55.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(5^n) cat Intseq(5^n)): n in [0..20]];
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[5^n],IntegerDigits[5^n]]],{n,0,20}]

Formula

a(n) = A020338(5^n).

A253445 a(n) = concatenation of n^2 with itself.

Original entry on oeis.org

11, 44, 99, 1616, 2525, 3636, 4949, 6464, 8181, 100100, 121121, 144144, 169169, 196196, 225225, 256256, 289289, 324324, 361361, 400400, 441441, 484484, 529529, 576576, 625625, 676676, 729729, 784784, 841841, 900900, 961961, 10241024, 10891089, 11561156
Offset: 1

Views

Author

Vincenzo Librandi, Jan 02 2015

Keywords

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(n^2) cat Intseq(n^2)): n in [1..40]];
    
  • Maple
    seq(n^2*(1+10^(1+ilog10(n^2))),n=1..100); # Robert Israel, Jan 02 2015
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n^2], IntegerDigits[n^2]]], {n, 40}]
  • PARI
    vector(100,n,eval(concat(Str(n^2),Str(n^2)))) \\ Derek Orr, Jan 02 2015

Formula

a(n) = A020338(n^2) = n^2 * (1 + 10^(A004216(n^2)+1)).
Previous Showing 41-50 of 64 results. Next