cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 51 results. Next

A139157 a(n) = (n!+10)/10.

Original entry on oeis.org

13, 73, 505, 4033, 36289, 362881, 3991681, 47900161, 622702081, 8717829121, 130767436801, 2092278988801, 35568742809601, 640237370572801, 12164510040883201, 243290200817664001, 5109094217170944001
Offset: 5

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 10)/10, {n, 5, 30}]
  • PARI
    for(n=5, 20, a=(n!+10)/10; print1(a, ", ")) \\ Felix Fröhlich, Jul 07 2014

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139071 Numbers k for which (10+k!)/10 is prime.

Original entry on oeis.org

5, 6, 11, 12, 15, 23, 26, 37, 45, 108, 112, 129, 137, 148, 172, 248, 760, 807, 975, 1398, 5231, 8765, 24182
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Primes of the form (10+k!)/10 see A139070.
a(24) > 25000. - Robert Price, Nov 08 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(k=5,1e3,if(ispseudoprime(k!/10+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(22)-a(23) from Robert Price, Nov 08 2016

A139148 Smallest positive integer of the form (m!+n)/n.

Original entry on oeis.org

2, 2, 3, 7, 25, 2, 721, 4, 81, 13, 3628801, 3, 479001601, 361, 9, 46, 20922789888001, 41, 6402373705728001, 7, 241, 1814401, 1124000727777607680001, 2, 145153, 239500801, 13441, 181, 304888344611713860501504000001, 5
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[m!/n], m++ ]; AppendTo[a, (m! + n)/n], {n, 1, 50}]; a

Formula

a(n) = (n + (A002034(n))!)/n.
a(n) = A007672(n) + 1. - Charles R Greathouse IV, Dec 09 2014

A139160 a(n)=(prime(n)!+2)/2.

Original entry on oeis.org

2, 4, 61, 2521, 19958401, 3113510401, 177843714048001, 60822550204416001, 12926008369442488320001, 4420880996869850977271808000001, 4111419327088961408862781440000001
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

For numbers of the form (p(n)!+1)/1 see A139159
For numbers of the form (p(n)!+2)/2 see A139160
For numbers of the form (p(n)!+3)/3 see A139161
For numbers of the form (p(n)!+4)/4 see A139162
For numbers of the form (p(n)!+5)/5 see A139163
For numbers of the form (p(n)!+6)/6 see A139164
For numbers of the form (p(n)!+7)/7 see A139165
For numbers of the form (p(n)!+8)/8 see A139166
For numbers of the form (p(n)!+9)/9 see A139089
For numbers of the form (p(n)!+10)/10 see A139168
For offsets for above sequences see A139169
For smallest integers of the form (p(m)!+n)/n see A139170

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 2)/2, {n, 1, 30}]
  • PARI
    a(n)=prime(n)!/2 + 1 \\ Charles R Greathouse IV, Apr 29 2015

A139089 a(n) = prime(n)!/9 + 1.

Original entry on oeis.org

561, 4435201, 691891201, 39520825344001, 13516122267648001, 2872446304320552960001, 982417999304411328282624000001, 913648739353102535302840320000001
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 9)/9, {n, 4, 30}]
    Prime[Range[4,12]]!/9+1 (* Harvey P. Dale, Aug 22 2020 *)

A020463 Primes that contain digits 3 and 7 only.

Original entry on oeis.org

3, 7, 37, 73, 337, 373, 733, 773, 3373, 3733, 7333, 33377, 33773, 37337, 77377, 77773, 333337, 333737, 373777, 377737, 733333, 733373, 737773, 773777, 777373, 777737, 3333373, 3333773, 3337333, 3337777, 3377377, 3733333, 3773377, 3773773, 3777377, 7337333, 7337777, 7377373, 7733377, 7737337
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A030096.

Programs

  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{3,7},n],PrimeQ],{n,7}]] (* Vincenzo Librandi, Jul 27 2012 *)

A139166 a(n) = (prime(n)!+8)/8.

Original entry on oeis.org

16, 631, 4989601, 778377601, 44460928512001, 15205637551104001, 3231502092360622080001, 1105220249217462744317952000001, 1027854831772240352215695360000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 8)/8, {n, 3, 30}]

A139168 a(n) = (prime(n)! + 10)/10.

Original entry on oeis.org

13, 505, 3991681, 622702081, 35568742809601, 12164510040883201, 2585201673888497664001, 884176199373970195454361600001, 822283865417792281772556288000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 10)/10, {n, 3, 30}]

A260125 Primes having only {0, 2, 3} as digits.

Original entry on oeis.org

2, 3, 23, 223, 233, 2003, 2203, 2333, 3023, 3203, 3323, 20023, 20233, 20323, 20333, 22003, 22303, 23003, 23203, 23333, 30203, 30223, 30323, 32003, 32203, 32233, 32303, 32323, 33023, 33203, 33223, 200003, 200023, 200033, 200323, 203023, 203233, 203323
Offset: 1

Views

Author

Vincenzo Librandi, Jul 17 2015

Keywords

Crossrefs

Cf. Primes that contain only the digits (2,3,k): this sequence (k=0), A062350 (k=1), A199342 (k=4), A214703 (k=5), A260126 (k=6), A214704 (k=7), A260127 (k=8), A260128 (k=9).
Cf. A020458 (a subsequence).

Programs

  • Magma
    [p: p in PrimesUpTo(300000) | Intseq(p) subset {2,3,0}];
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {2, 3, 0}]=={} &]
    Select[FromDigits/@Tuples[{0,2,3},6],PrimeQ] (* Harvey P. Dale, Mar 06 2020 *)

A139060 Primes of the form (4+k!)/4.

Original entry on oeis.org

7, 31, 181, 1556755201, 12772735542927360001, 3877802510832746496000001, 65782709233423382541804503040000001, 203978820811974433586402817399028973568000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (4+k!)/4 is prime see A139061.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, (n! + 4)/4]], {n, 1, 50}]; a
    Select[(4+Range[100]!)/4,PrimeQ] (* Harvey P. Dale, Oct 05 2016 *)
  • PARI
    for(k=4,1e3,if(ispseudoprime(t=k!/4+1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139151(A139061(n)). - Amiram Eldar, Oct 13 2024
Previous Showing 11-20 of 51 results. Next