cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A046870 Numbers k such that sigma_1(k) divides sigma_4(k).

Original entry on oeis.org

1, 4, 9, 16, 20, 25, 36, 49, 50, 64, 81, 100, 117, 121, 144, 169, 180, 196, 225, 242, 256, 289, 324, 325, 361, 400, 441, 450, 468, 484, 500, 529, 576, 578, 605, 625, 650, 676, 729, 784, 800, 841, 900, 961, 980, 1024, 1025, 1058, 1089, 1156, 1225, 1280, 1296
Offset: 1

Views

Author

Keywords

Comments

sigma_1(n) is the sum of the divisors of n [same as sigma(n)] (A000203).
sigma_2(n) is the sum of the squares of the divisors of n (A001157).
sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).

Examples

			k = a(18) = 196 of which divisor power sums for k=0,1,2,3,4 are 9,399,51471, 8613489, 1574446419. sigma_1(k) = 399 and sigma_4(k) = 51471*30589=399*129*30589. Thus both sigma_2(k) and sigma_1(k) divide sigma_4(k).
		

Crossrefs

Has large overlap with A020487.

Programs

  • Mathematica
    Select[Range[1300], Divisible @@ DivisorSigma[{4, 1}, #] &] (* Amiram Eldar, Jun 15 2024 *)
  • PARI
    is(k) = {my(f = factor(k)); !(sigma(f, 4) % sigma(f)); } \\ Amiram Eldar, Jun 15 2024

A327054 a(n) is the smallest number m such that the antiharmonic mean of the divisors is n, or 0 if no such m exists.

Original entry on oeis.org

1, 0, 4, 0, 0, 0, 9, 0, 0, 0, 16, 0, 20, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jaroslav Krizek, Oct 06 2019

Keywords

Comments

a(n) = the smallest number m such that sigma_2(n) / sigma_1(n) = A001157(m) / A000203(m) = n, or 0 if no such m exists.
Zeros occur if n is not in A176799.
See A000290, A091911 and A162538 for like sequences for geometric, arithmetic and harmonic means of the divisors.

Examples

			a(3) = 4 because 4 is the smallest number m with sigma_2(m) / sigma_1(m) = 3; sigma_2(4) / sigma_1(4) = 21 / 7 = 3.
		

Crossrefs

Programs

  • Magma
    A327054:=func; [A327054(n): n in[1..100]];
  • Maple
    # This uses the b-file for A004394
    # See comment at A176799
    K:= 100: # to get terms <= K
    M:= 36 * K^2/Pi^4:
    for i from 1 while A004394[i] < M do od:
    r:= numtheory:-sigma(A004394[i])/A004394[i]:
    V:= Vector(K):
    for m from 1 to r*K do
      F:= numtheory:-divisors(m);
      v:= add(d^2, d=F)/add(d, d=F);
      if v::integer and v <= K and V[v] = 0 then V[v]:= m fi;
    od:
    convert(V,list); # Robert Israel, Sep 05 2024

A074632 Numbers k such that the sum of 2nd, 3rd, 4th and 5th powers of divisors of k are divisible by sum of divisors of k.

Original entry on oeis.org

1, 20, 64, 500, 729, 1024, 1280, 4096, 4352, 14580, 15625, 32000, 39168, 46656, 47360, 59049, 65536, 117649, 144640, 161024, 262144, 312500, 364500, 509184, 531441, 746496, 796797, 933120, 1000000, 1180980, 1184000, 1449216, 1771561
Offset: 1

Views

Author

Labos Elemer, Aug 27 2002

Keywords

Examples

			For k = 20: sigma(k) = 42 ,sigma_2(k) = 546 = 13 * 42, sigma_3(k) = 9198 = 219 * 42, sigma_4(k) = 170898 = 4069 * 42, sigma_5(k) = 3304182 = 78671 * 42.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000000],And@@Divisible[DivisorSigma[Range[2,5],#], DivisorSigma[ 1,#]]&] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f)); for(k = 2, 5, if(sigma(f, k) % s, return(0))); 1; }  \\ Amiram Eldar, Jun 15 2024

A144922 Numbers k such that k*sigma_2(k)/sigma_1(k) is an integer.

Original entry on oeis.org

1, 4, 6, 9, 12, 16, 18, 20, 24, 25, 28, 36, 44, 45, 48, 49, 50, 54, 60, 64, 72, 81, 90, 92, 96, 100, 108, 112, 117, 121, 132, 140, 144, 150, 153, 162, 168, 169, 180, 192, 196, 198, 200, 204, 216, 225, 228, 234, 240, 242, 252, 256, 270, 288, 289, 294, 300
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 25 2008

Keywords

Comments

Numbers k such that k*A001157(k)/A000203(k) is an integer. This sequence is connected closely with Ore divisor numbers (A001599) and RMS numbers (A140480).
This sequence is infinite. E.g., all the numbers of the form 3*2^m, for m >= 1, are terms, since 3*2^m * sigma_2(3*2^m) / sigma_1(3*2^m) = 5 * 2^(m-1) * (2^(m+1)+1) is an integer. - Amiram Eldar, Dec 25 2024

Crossrefs

A020487 is a subsequence.

Programs

  • Mathematica
    Select[Range[300],IntegerQ[(#*DivisorSigma[2,#])/DivisorSigma[1,#]]&] (* Harvey P. Dale, Oct 28 2018 *)
  • PARI
    is(k) = my(f = factor(k)); !((k*sigma(f, 2)) % sigma(f)); \\ Amiram Eldar, Dec 25 2024

Extensions

More terms from Harvey P. Dale, Oct 28 2018

A152215 Numbers k such that sigma_2(k)/(sigma_1(k)*sigma_0(k)) = c, c an integer.

Original entry on oeis.org

1, 4, 25, 100, 121, 256, 289, 484, 529, 841, 1156, 1600, 1681, 2116, 2209, 2809, 3025, 3364, 3481, 5041, 6400, 6724, 6889, 7225, 7921, 8836, 10201, 11236, 11449, 12100, 12769, 13225, 13924, 17161, 18225, 18496, 18769, 20164, 21025, 22201, 27556, 27889, 28900
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 29 2008

Keywords

Comments

k : A001157(k)/(A000203(k)*A000005(k)) = c, c an integer.

Crossrefs

Programs

  • Mathematica
    Select[Range[50000],IntegerQ[DivisorSigma[2,#]/(DivisorSigma[1,#] DivisorSigma[ 0,#])]&] (* Harvey P. Dale, Feb 12 2013 *)
  • PARI
    isok(k) = denominator(sigma(k,2)/(sigma(k, 1)*sigma(k,0))) == 1; \\ Michel Marcus, Jul 15 2019

Extensions

More terms from Harvey P. Dale, Feb 12 2013

A158276 Numbers k such that sigma_1(k) does not divide sigma_2(k).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Jaroslav Krizek, Mar 15 2009

Keywords

Comments

Numbers k such that the antiharmonic mean of divisors of k is not an integer.
Antiharmonic mean of divisors of a number m = Product (p_i^e_i) is A001157(m)/A000203(m) = Product ((p_i^(e_i+1)+1)/(p_i+1)).
Numbers k such that A001157(k)/A000203(k) is not an integer.

Examples

			a(12) = 15, sigma_2(15)/sigma_1(15)=260/24 = 65/6 (not integer).
		

Crossrefs

Complement of A020487.

Programs

  • Mathematica
    Select[Range[100], Mod @@ DivisorSigma[{2, 1}, #] > 0 &] (* Amiram Eldar, Mar 22 2024 *)
  • PARI
    is(n) = {my(f = factor(n)); sigma(f, 2) % sigma(f);} \\ Amiram Eldar, Mar 22 2024

Extensions

More terms from Amiram Eldar, Mar 22 2024

A280353 Numbers n such that the sum of the divisors of n divides sum of squares of divisors of n and number of divisors of n divides n.

Original entry on oeis.org

1, 9, 36, 180, 225, 441, 450, 468, 625, 1089, 1476, 1521, 1620, 1800, 2025, 2178, 2340, 2601, 3249, 3600, 4050, 4500, 4761, 5202, 5625, 6561, 7569, 8100, 8649, 8712, 9522, 10000, 12321, 13572, 15129, 15138, 16200, 16641, 19881, 20808, 22500, 23400, 25281, 26244, 28224, 28800
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 01 2017

Keywords

Comments

Intersection of A020487 and A033950.
Numbers n such that A000203(n)|A001157(n) and A000005(n)|n.

Examples

			9 is in the sequence because 9 has 3 divisors {1,3,9}, 9/3 = 3 and (1^2 + 3^2 + 9^2)/(1 + 3 + 9) = 7 are both integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], Divisible[DivisorSigma[2, #1], DivisorSigma[1, #1]] && Divisible[#1, DivisorSigma[0, #1]] & ]
    Select[Range[30000],With[{ds=DivisorSigma},Mod[ds[2,#],ds[1,#]]==Mod[#,ds[0,#]]==0&]] (* Harvey P. Dale, Nov 27 2024 *)

A301482 Composite numbers whose sum of aliquot parts divide the sum of the squares of their aliquot parts.

Original entry on oeis.org

8, 22, 27, 32, 77, 125, 128, 243, 343, 494, 512, 611, 660, 1073, 1281, 1331, 1425, 2033, 2048, 2187, 2197, 2332, 3125, 4172, 4565, 4913, 5293, 6031, 6859, 8192, 9983, 12167, 13969, 15818, 15947, 16807, 17485, 19683, 23489, 23840, 24389, 25241, 25389, 29791, 32768
Offset: 1

Views

Author

Paolo P. Lava, Mar 22 2018

Keywords

Comments

Semiprimes in the sequence: 22, 77, 611, 1073, 2033, 5293, 6031, 9983, 13969, 15947, 23489, 25241, 40301, 49901, 50249, 51101, 56759, 65017, 71677, 85079, 97217, 98099, 99101, .... - Robert Israel, Mar 29 2018
2^k is a term for all odd k > 1. - Michael S. Branicky, Aug 22 2021

Examples

			Aliquot parts of 77 are 1, 7, 11. Then (1^2 + 7^2 + 11^2)/(1 + 7 + 11) = 171/19 = 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(n)
    if not isprime(n) and frac((add(p^2,p=divisors(n))-n^2)/(sigma(n)-n))=0
    then n; fi; end: seq(P(i),i=2..35*10^3);
  • Mathematica
    aQ[n_] := CompositeQ[n] && Divisible[DivisorSigma[2, n] - n^2, DivisorSigma[1, n] - n]; Select[Range[33000], aQ] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    isok(n) = (n!=1) && !isprime(n) && (((sigma(n,2) - n^2) % (sigma(n) - n)) == 0); \\ Michel Marcus, Mar 23 2018
    
  • Python
    from sympy import divisors
    def ok(n):
        divs = divisors(n)[:-1]
        return len(divs) > 1 and sum(d**2 for d in divs)%sum(divs) == 0
    print(list(filter(ok, range(4, 32769)))) # Michael S. Branicky, Aug 22 2021

A176803 a(n) = the smallest natural numbers m such that product of antiharmonic mean of the divisors of n and antiharmonic mean of the divisors of m are integers, a(n) = 0 if no such number exists.

Original entry on oeis.org

1, 4, 0, 1, 4, 0, 0, 4, 1, 100, 0, 0, 9, 0, 0, 1, 100, 4, 0, 1, 0, 0, 0, 0, 1, 25, 0, 0, 325, 0
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2010

Keywords

Comments

Antiharmonic mean of the divisors of number n is rational number b(n) = A001157(n) / A000203(n) = A158274(n) / A158275(n). a(n) = 1 for infinitely many n. a(n) = 1 for numbers from A020487: a(A020487(n)) = 1. a(n) = 1 iff A158275(n) = 1. a(n) = 0 for infinitely many n. a(n) = 0 for even A158275(n).

Examples

			For n = 10; b(10) = 65/9, a(n) = 100 because b(100) = 63; 65/9 * 63 = 455 (integer).
		

A192286 Antiharmonic numbers using anti-divisors: numbers n such that sigma*(n) divides sigma*_2(n), where sigma*(n) is the sum of anti-divisors of n and sigma*_2(n) the sum of squares of anti-divisors of n.

Original entry on oeis.org

3, 4, 6, 9, 36, 54, 96, 216, 576, 1212, 1296, 1582, 2171, 3129, 3599, 26847, 45914, 69984, 76393, 91013, 137173, 176678, 182559, 183087, 236196, 393216, 497664, 3823898, 28697814, 31850496, 46572031, 47992961, 83951616, 84934656, 95969521, 126310141, 472250381
Offset: 1

Views

Author

Paolo P. Lava, Jul 28 2011

Keywords

Examples

			Anti-divisors of 1212 are 5, 8, 24, 25, 97, 485, 808 and their sum is 1452. The sum of the squares of anti-divisors is 898788 and 898788/1452=619.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(n)
    local a,b,i,k;
    for i from 3 to n do
      a:=0; b:=0;
      for k from 2 to i-1 do
        if abs((i mod k)- k/2) < 1 then a:=a+k; b:=b+k^2; fi;
      od;
      if trunc(b/a)=b/a then print(i); fi;
    od;
    end:
    P(200000);

Formula

Like A020487 but using anti-divisors.
4, 9, 36, 576, 1296, etc. are antiharmonic both with divisors and anti-divisors.

Extensions

a(22)-a(37) from Donovan Johnson, Sep 22 2011
Previous Showing 21-30 of 31 results. Next